755 research outputs found

    Magnetic response of nonmagnetic impurities in cuprates

    Full text link
    A theory of the local magnetic response of a nonmagnetic impurity in a doped antiferromagnet, as relevant to the normal state in cuprates, is presented. It is based on the assumption of the overdamped collective mode in the bulk system and on the evidence, that equal-time spin correlations are only weakly renormalized in the vicinity of the impurity. The theory relates the Kondo-like behavior of the local susceptibility to the anomalous temperature dependence of the bulk magnetic susceptibility, where the observed increase of the Kondo temperature with doping reflects the crossover to the Fermi liquid regime and the spatial distribution of the magnetization is given by bulk antiferromagnetic correlations.Comment: 5 pages, 3 figure

    Chirality sensitive effect on surface states in chiral p-wave superconductors

    Full text link
    We study the local density of states at the surface of a chiral p-wave superconductor in the presence of a weak magnetic field. As a result, the formation of low-energy Andreev bound states is either suppressed or enhanced by an applied magnetic field, depending on its orientation with respect to the chirality of the p-wave superconductor. Similarly, an Abrikosov vortex, which is situated not too far from the surface, leads to a zero-energy peak of the density of states, if its chirality is the same as that of the superconductor, and to a gap structure for the opposite case. We explain the underlying principle of this effect and propose a chirality sensitive test on unconventional superconductors.Comment: 4 pages, 2 figure

    Spin, charge and orbital fluctuations in a multi-orbital Mott insulator

    Full text link
    The two-orbital degenerate Hubbard model with distinct hopping integrals is studied by combining dynamical mean-field theory with quantum Monte Carlo simulations. The role of orbital fluctuations for the nature of the Mott transition is elucidated by examining the temperature dependence of spin, charge and orbital susceptibilities as well as the one-particle spectral function. We also consider the effect of the hybridization between the two orbitals, which is important particularly close to the Mott transition points. The introduction of the hybridization induces orbital fluctuations, resulting in the formation of a Kondo-like heavy-fermion behavior, similarly to ff electron systems, but involving electrons in bands of comparable width.Comment: 8 pages, 9 figure

    Competitions in layered ruthenates: ferro- vs. antiferromagnetism and triplet vs. singlet pairing

    Full text link
    Ru based perovskites demonstrate an amazing richness in their magnetic properties, including 3D and quasi-2D ferromagnetism, antiferromagnetism, and unconventional superconductivity. Tendency to ferromagnetism, stemming from the unusually large involvement of O in magnetism in ruthenates, leads to ferromagnetic spin fluctuations in Sr2RuO4 and eventually to p-wave superconductivity. A related compound Ca2RuO4 was measured to be antiferromagnetic, suggesting a possibility of antiferromagnetic fluctuations in Sr2RuO4 as well. Here we report first principles calculations that demonstrate that in both compounds the ferro- and antiferromagnetic fluctuations coexist, leading to an actual instability in Ca2RuO4 and to a close competition between p-wave and d-wave superconducting symmetries in Sr2RuO4. The antiferromagnetism in this system appears to be mostly related with the nesting, which is the strongest at Q=(2pi/3,2pi/3,0). Surprisingly, for the Fermiology of Sr2RuO4 the p-wave state wins over the d-wave one everywhere except in close vicinity of the antiferromagnetic instability. The most stable state within the d-wave channel has vanishing order parameter at one out of three Fermi surfaces in Sr2RuO4, while in the p channel its amplitude is comparable at all three of them.Comment: 4 Revtex pages with 4 embedded postscript figure. Some figures are color, but should look OK in B&W as wel

    On the Bloch Theorem Concerning Spontaneous Electric Current

    Full text link
    We study the Bloch theorem which states absence of the spontaneous current in interacting electron systems. This theorem is shown to be still applicable to the system with the magnetic field induced by the electric current. Application to the spontaneous surface current is also examined in detail. Our result excludes the possibility of the recently proposed dd-wave superconductivity having the surface flow and finite total current.Comment: 12 pages, LaTeX, 3 Postscript figure

    Phenomenological theory of the 3 Kelvin phase in Sr2RuO4

    Full text link
    We model the 3K-phase of Sr2RuO4 with Ru-metal inclusion as interface state with locally enhanced transition temperatures. The resulting 3K-phase must have a different pairing symmetry than the bulk phase of Sr2RuO4, because the symmetry at the interface is lower than in the bulk. It is invariant under time reversal and a second transition, in general, above the onset of bulk superconductivity is expected where time reversal symmetry is broken. The nucleation of the 3K-phase exhibits a ``capillary effect'' which can lead to frustration phenomena for the superconducting states on different Ru-inclusions. Furthermore, the phase structure of the pair wave function gives rise to zero-energy quasiparticle states which would be visible in quasiparticle tunneling spectra. Additional characteristic properties are associated with the upper critical field Hc2. The 3K-phase has a weaker anisotropy of Hc2 between the inplane and z-axis orientation than the bulk superconducting phase. This is connected with the more isotropic nature Ru-metal which yields a stronger orbital depairing effect for the inplane magnetic field than in the strongly layered Sr$_2RuO4. An anomalous temperature dependence for the z-axis critical field is found due to the coupling of the magnetic field to the order parameter texture at the interface. Various other experiments are discussed and new measurements are suggested.Comment: 10 pages, 5 figure

    Orbital-selective Mott transitions in the anisotropic two-band Hubbard model at finite temperatures

    Full text link
    The anisotropic degenerate two-orbital Hubbard model is studied within dynamical mean-field theory at low temperatures. High-precision calculations on the basis of a refined quantum Monte Carlo (QMC) method reveal that two distinct orbital-selective Mott transitions occur for a bandwidth ratio of 2 even in the absence of spin-flip contributions to the Hund exchange. The second transition -- not seen in earlier studies using QMC, iterative perturbation theory, and exact diagonalization -- is clearly exposed in a low-frequency analysis of the self-energy and in local spectra.Comment: 4 pages, 5 figure
    corecore