612 research outputs found

    The Problem of Inertia in Friedmann Universes

    Full text link
    In this paper we study the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass mm by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form F=−kmaF = -kma, where k<1k < 1 depends on the choice of the cosmological parameters such as ΩM\Omega_{M}, ΩΛ\Omega_{\Lambda}, and ΩR\Omega_{R} and is also red-shift dependent.Comment: 10 page

    Molecular signals from primordial clouds at high redshift

    Get PDF
    The possibility to detect cosmological signals from the post-recombination Universe is one of the main aims of modern cosmology. In a previous paper we emphasized the role that elastic resonant scattering through LiH molecules can have in dumping primary CBR anisotropies and raising secondary signals. Here we extend our analysis to all the evolutionary stages of a primordial cloud, starting with the linear phase, through the turn-around and to the non linear collapse. We have done calculations for proto-clouds in a CDM scenario and, more generally, for a set of clouds with various masses and various turn-around redshifts, in this case without referring to any particular structure formation scenario. We found that the first phase of collapse, for t/tfree−fall=0.05÷0.2t/t_{free-fall}=0.05\div 0.2 is the best one for simultaneous detection of the first two LiH rotational lines. The observational frequency falls between 30 and 250 GHz and the line width Δνν{\Delta \nu\over \nu} is between 10−510^{-5} and 10−410^{-4}. As far as we know this is the most favourable process to detect primordial clouds before they start star formation processes.Comment: 26 pages, uuencoded compressed postscript, 7 figures included. Accepted for publication in Ap.

    Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy?

    Get PDF
    Dupuytren's contracture (DC) is a benign fibro-proliferative disease of the hand causing fibrotic nodules and fascial cords which determine debilitating contracture and deformities of fingers and hands. The present study was designed to characterize pro-inflammatory cytokines and growth factors involved in the pathogenesis, progression and recurrence of this disease, in order to find novel targets for alternative therapies and strategies in controlling DC. The expression of pro-inflammatory cytokines and of growth factors was detected by immunohistochemistry in fibrotic nodules and normal palmar fascia resected respectively from patients affected by DC and carpal tunnel syndrome (CTS; as negative controls). Reverse transcription (RT)-PCR analysis and immunofluorescence were performed to quantify the expression of transforming growth factor (TGF)-β1, interleukin (IL)-1β and vascular endothelial growth factor (VEGF) by primary cultures of myofibroblasts and fibroblasts isolated from Dupuytren's nodules. Histological analysis showed high cellularity and high proliferation rate in Dupuytren's tissue, together with the presence of myofibroblastic isotypes; immunohistochemical staining for macrophages was completely negative. In addition, a strong expression of TGF-β1, IL-1β and VEGF was evident in the extracellular matrix and in the cytoplasm of fibroblasts and myofibroblasts in Dupuytren's nodular tissues, as compared with control tissues. These results were confirmed by RT-PCR and by immunofluorescence in pathological and normal primary cell cultures. These preliminary observations suggest that TGF-β1, IL-1β and VEGF may be considered potential therapeutic targets in the treatment of Dupuytren's disease (DD)

    CULTURAL IDENTITY AND CONSERVATION OF INDIGENOUS AND NATIVE DIVERSITY

    Get PDF
    The economic development of rural areas has rarely followed that of urban centres, with greater evidence of this in developing countries where the outlying communities have remained considerably more remote from the systems of cultural and economic growth. Even if this has had negative repercussions in terms of social equilibrium within the various countries, from a strictly agronomic point of view it has often resulted in the natural conservation of indigenous and native biodiversity. This has been affected by the natural and daily use of local plant extracts both for nutritional purposes and for a variety of other reasons. The exchange of genetic material between one community and another, often a sign of respect and friendship, has helped to increase plant diversity and to enhance its role in the everyday diet of rural populations. Any activity aimed at conserving biodiversity cannot disregard the fact that native plant species (and even more indigenous species) now play a vital role in the cultural identity of rural communities, and that making such communities aware of this precious asset can also play a strategic part in the idea of promoting biological diversity as a way of developing local economies. Such evidence clearly emerged through the various activities conducted in the context of the project, FAO GTF/RAF/426/ITA Promoting Origin-linked Quality Products in Four Countries in West Africa, financed by the Slow Food Foundation for Biodiversity Onlus. This project, conducted in 4 West African countries (Sierra Leone, Guinea Bissau, Senegal and Mali), aimed to carry out a study of these 4 states and draw up an inventory of the traditional plant and animal species, to examine the link between these and the diet of rural populations, and to assess the risks of genetic erosion by actions to safeguard the native biodiversity

    Retrieval of magnetic medical microrobots from the bloodstream

    Get PDF
    Untethered magnetic microrobots hold the potential to penetrate hard-to-reach areas of the human body and to perform therapy in a controlled way. In the past decade, impressive advancements have been made in this field but the clinical adoption of magnetoresponsive microrobots is still hampered by safety issues. A tool appointed for magnetic microrobots retrieval within body fluids could enable a real paradigm change, fostering their clinical translation.By starting from the general problem to retrieve magnetic microrobots injected into the bloodstream, the authors introduce a magnetic capture model that allows to design retrieval tools for magnetic cores of different diameters (down to 10 nm) and in different environmental conditions (fluid speed up to 7 cms-1). The model robustness is demonstrated by the design and testing of a retrieval catheter. In its optimal configuration, the catheter includes 27 magnets and fits a 12 F catheter. The model provides a good prediction of capture efficiency for 250 nm magnetic particles (experimental data: 77.6%, model prediction: 65%) and a very good prediction for 500 nm particles (experimental data: 93.6%, model prediction: 94%). The results support the proposed model-based design approach, which can be extended to retrieve other magnetoresponsive agents from body compartments

    Remarkable effect of [Li(G4)]TFSI solvate ionic liquid (SIL) on the regio- And stereoselective ring opening of α-gluco carbasugar 1,2-epoxides

    Get PDF
    Carba analogues of biologically relevant natural carbohydrates are promising structures for the development of future drugs endowed with enhanced hydrolytic stability. An open synthetic challenge in this field is the optimization of new methodologies for the stereo- and regioselective opening of α-gluco carbasugar 1,2-epoxides that allow for the preparation of pseudo mono- and disaccharides of great interest. Therefore, we investigated the effect of Lewis acids and solvate ionic liquids (SILs) on the epoxide ring opening of a model substrate. Of particular interest was the complete stereo- and regioselectivity, albeit limited to simple nucleophiles, toward the desired C(1) isomer that was observed using LiClO4. The results obtained with SILs were also remarkable. In particular, Li[NTf2]/tetraglyme ([Li(G4)]TFSI) was able to function as a Lewis acid and to direct the attack of the nucleophile preferentially at the pseudo anomeric position, even with a more complex and synthetically interesting nucleophile. The regioselectivity observed for LiClO4 and [Li(G4)]TFSI was tentatively ascribed to the formation of a bidentate chelating system, which changed the conformational equilibrium and ultimately permitted a trans-diaxial attack on C(1). To the best of our knowledge, we report here the first case in which SILs were successfully employed in a ring-opening process of epoxides

    Introgressive Hybridization and Hypoxia Adaptation in High-Altitude Vertebrates

    Get PDF
    In natural populations of animals, a growing body of evidence suggests that introgressive hybridization may often serve as an important source of adaptive genetic variation. Population genomic studies of high-altitude vertebrates have provided strong evidence of positive selection on introgressed allelic variants, typically involving a long-term highland species as the donor and a more recently arrived colonizing species as the recipient. In high-altitude humans and canids from the Tibetan Plateau, case studies of adaptive introgression involving the HIF transcription factor, EPAS1, have provided insights into complex histories of ancient introgression, including examples of admixture from now-extinct source populations. In Tibetan canids and Andean waterfowl, directed mutagenesis experiments involving introgressed hemoglobin variants successfully identified causative amino acid mutations and characterized their phenotypic effects, thereby providing insights into the functional properties of selectively introgressed alleles. We review case studies of adaptive introgression in high-altitude vertebrates and we highlight findings that may be of general significance for understanding mechanisms of environmental adaptation involving different sources of genetic variation

    Probing Yukawian Gravitational Potential by Numerical Simulations. II. Elliptical Galaxies

    Full text link
    Since the Newtonian gravitation is largely used to model with success the structures of the universe, such as galaxies and clusters of galaxies, for example, a way to probe and constrain alternative theories, in the weak field limit, is to apply them to model the structures of the universe. We then modified the well known Gadget-2 code to probe alternative theories of gravitation through galactic dynamics. In particular, we modified the Gadget-2 code to probe alternatives theories whose weak field limits have a Yukawa-like gravitational potential. As a first application of this modified Gadget-2 code we simulate the evolution of elliptical galaxies. These simulations show that galactic dynamics can be used to constrain the parameters associated with alternative theories of gravitation.Comment: 6 pages, 5 figures - To appear in General Relativity and Gravitatio

    Stringent Constraint on Galactic Positron Production

    Full text link
    The intense 0.511 MeV gamma-ray line emission from the Galactic Center observed by INTEGRAL requires a large annihilation rate of nonrelativistic positrons. If these positrons are injected at even mildly relativistic energies, higher-energy gamma rays will also be produced. We calculate the gamma-ray spectrum due to inflight annihilation and compare to the observed diffuse Galactic gamma-ray data. Even in a simplified but conservative treatment, we find that the positron injection energies must be ≲3\lesssim 3 MeV, which strongly constrains models for Galactic positron production.Comment: 4 pages, 2 figures; minor revisions, accepted for publication in PR

    Probing Yukawian gravitational potential by numerical simulations. I. Changing N-body codes

    Full text link
    In the weak field limit general relativity reduces, as is well known, to the Newtonian gravitation. Alternative theories of gravity, however, do not necessarily reduce to Newtonian gravitation; some of them, for example, reduce to Yukawa-like potentials instead of the Newtonian potential. Since the Newtonian gravitation is largely used to model with success the structures of the universe, such as for example galaxies and clusters of galaxies, a way to probe and constrain alternative theories, in the weak field limit, is to apply them to model the structures of the universe. In the present study, we consider how to probe Yukawa-like potentials using N-body numerical simulations.Comment: 17 pages, 11 figures. To appear in General Relativity and Gravitatio
    • …
    corecore