25 research outputs found
Limits on decaying dark energy density models from the CMB temperature-redshift relation
The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (Phys Rev D 54:2571, 1996). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the cosmic microwave background (CMB) which depends on the effective equation of state w eff and on the "adiabatic indexâ Îł. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev-Zel'dovich observations and at higher redshift from quasar absorption line spectra, we find w eff=â0.97 ± 0.03, adopting for the adiabatic index Îł=4/3, in good agreement with current estimates and still compatible with w eff=â1, implying that the dark energy content being constant in tim
The Sunyaev-Zeldovich MITO Project
Compton scattering of the cosmic microwave background radiation by electrons
in the hot gas in clusters of galaxies - the Sunyaev-Zeldovich effect - has
long been recognized as a uniquely important feature, rich in cosmological and
astrophysical information. We briefly describe the effect, and emphasize the
need for detailed S-Z and X-ray measurements of nearby clusters in order to use
the effect as a precise cosmological probe. This is the goal of the MITO
project, whose first stage consisted of observations of the S-Z effect in the
Coma cluster. We report the results of these observations.Comment: To appear in Proceedings of `Understanding our Universe at the close
of XXth century', School held Apr 25 - May 6 2000, Cargese, 16 pages LaTeX, 2
figures ps (using elsart.sty & elsart.cls), text minor revisio
MITO measurements of the Sunyaev-Zeldovich Effect in the Coma cluster of galaxies
We have measured the Sunyaev-Zeldovich effect towards the Coma cluster
(A1656) with the MITO experiment, a 2.6-m telescope equipped with a 4-channel
17 arcminute (FWHM) photometer. Measurements at frequency bands 143+/-15,
214+/-15, 272+/-16 and 353+/-13 GHz, were made during 120 drift scans of Coma.
We describe the observations and data analysis that involved extraction of the
S-Z signal by employing a spatial and spectral de-correlation scheme to remove
a dominant atmospheric component. The deduced values of the thermal S-Z effect
in the first three bands are DT_{0} = -179+/-38,-33+/-81,170+/-35 microKelvin
in the cluster center. The corresponding optical depth, tau=(4.1+/-0.9)
10^{-3}, is consistent (within errors) with both the value from a previous low
frequency S-Z measurement, and the value predicted from the X-ray deduced gas
parameters.Comment: Ap.J.Letters accepted, 4 pages, 2 figure
Limits on decaying dark energy density models from the CMB temperature-redshift relation
The nature of the dark energy is still a mystery and several models have been
proposed to explain it. Here we consider a phenomenological model for dark
energy decay into photons and particles as proposed by Lima (J. Lima, Phys.
Rev. D 54, 2571 (1996)). He studied the thermodynamic aspects of decaying dark
energy models in particular in the case of a continuous photon creation and/or
disruption. Following his approach, we derive a temperature redshift relation
for the CMB which depends on the effective equation of state and on
the "adiabatic index" . Comparing our relation with the data on the CMB
temperature as a function of the redshift obtained from Sunyaev-Zel'dovich
observations and at higher redshift from quasar absorption line spectra, we
find , adopting for the adiabatic index ,
in good agreement with current estimates and still compatible with
, implying that the dark energy content being constant in time.Comment: 8 pages, 1 figur
From nuclei to atoms and molecules: the chemical history of the early Universe
The "dark age" of the Universe is generally pointed out as the period between
the recombination epoch and the horizon of current observations (z=5-6). The
arrow of time in the cosmic history describes the progression from simplicity
to complexity, because the present Universe is clumpy and complicated unlike
the homogeneous early Universe. Thus it is crucial to know the nature of the
constituents, in order to understand the conditions of the formation of the
first bound objects. In this paper we analyse the chemical history of this
"dark age" through the creation of the primordial nuclei to the formation of
the first atoms and molecules. Then we will describe the consequences of the
molecular formation on the birth of the proto-objects. In this context we will
mention the important works of Dennis W. Sciama who influenced a large number
of theorists -cosmologists and astronomers- on this new field of research
dedicated to primordial molecules.Comment: 25 pages, 1 figure, Special Issue dedicated to Pr. Dennis W. Sciam
The Rome Paris collaboration
International audienceSince the first "Twinning CEE Project" between the Group of Francesco Mechiorri and our Laboratory at Observatoire de Paris and Ecole Normale Supérieure, and then through several European Networks and NASA Collaborations on the Cosmic Microwave Background, a long-term and fruitful cooperation has existed between Rome and Paris. This contribution will focus on the human story, the principal results and the possible prospects of this wonderful collaboration
Cosmic microwave background and first molecules in the early universe
International audienceBesides the Hubble expansion of the universe, the main evidence in favor of the big-bang theory was the discovery, by Penzias and Wilson, of the cosmic microwave background (hereafter CMB) radiation. In 1990, the COBE satellite (Cosmic Background Explorer) revealed an accurate black-body behavior with a temperature around 2.7 K. Although the microwave background is very smooth, the COBE satellite did detect small variationsâat the level of one part in 100 000âin the temperature of the CMB from place to place in the sky. These ripples are caused by acoustic oscillations in the primordial plasma. While COBE was only sensitive to long-wavelength waves, the Wilkinson Microwave Anisotropy Probe (WMAP)âwith its much higher resolutionâreveals that the CMB temperature variations follow the distinctive pattern predicted by cosmological theory. Moreover, the existence of the microwave background allows cosmologists to deduce the conditions present in the early stages of the big bang and, in particular, helps to account for the chemistry of the universe. This report summarizes the latest measurements and studies of the CMB with the new calculations about the formation of primordial molecules. The PLANCK missionâplanned to be launched in 2009âis also presented
L'espace et le temps : le point de vue astronomique
Schatzman Evry, Signore Monique. L'espace et le temps : le point de vue astronomique. In: Communications, 41, 1985. L'espace perdu et le temps retrouvé, sous la direction de Rémy Lestienne et Edgar Morin. pp. 81-94