364 research outputs found

    Determining the strange and antistrange quark distributions of the nucleon

    Full text link
    The difference between the strange and antistrange quark distributions, \delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from non-perturbative processes, and can be calculated using non-perturbative models of the nucleon. We report calculations of δs(x)\delta s(x) and Δ(x)\Delta(x) using the meson cloud model. Combining our calculations of Δ(x)\Delta(x) with relatively well known light antiquark distributions obtained from global analysis of available experimental data, we estimate the total strange sea distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0

    Nucleon Structure Functions from a Chiral Soliton in the Infinite Momentum Frame

    Get PDF
    We study the frame dependence of nucleon structure functions obtained within a chiral soliton model for the nucleon. Employing light cone coordinates and introducing collective coordinates together with their conjugate momenta, translational invariance of the solitonic quark fields (which describe the nucleon as a localized object) is restored. This formulation allows us to perform a Lorentz boost to the infinite momentum frame of the nucleon. The major result is that the Lorentz contraction associated with this boost causes the leading twist contribution to the structure functions to properly vanish when the Bjorken variable xx exceeds unity. Furthermore we demonstrate that for structure functions calculated in the valence quark approximation to the Nambu--Jona--Lasinio chiral soliton model the Lorentz contraction also has significant effects on the structure functions for moderate values of the Bjorken variable xx.Comment: 16 pages, 1 figure, revised version to be published in Int. J. Mod. Phys.

    Joint multi-pitch detection and score transcription for polyphonic piano music

    Get PDF
    Research on automatic music transcription has largely focused on multi-pitch detection; there is limited discussion on how to obtain a machine- or human-readable score transcription. In this paper, we propose a method for joint multi-pitch detection and score transcription for polyphonic piano music. The outputs of our system include both a piano-roll representation (a descriptive transcription) and a symbolic musical notation (a prescriptive transcription). Unlike traditional methods that further convert MIDI transcriptions into musical scores, we use a multitask model combined with a Convolutional Recurrent Neural Network and Sequence-to-sequence models with attention mechanisms. We propose a Reshaped score representation that outperforms a LilyPond representation in terms of both prediction accuracy and time/memory resources, and compare different input audio spectrograms. We also create a new synthesized dataset for score transcription research. Experimental results show that the joint model outperforms a single-task model in score transcription

    The Casimir Effect in Spheroidal Geometries

    Full text link
    We study the zero point energy of massless scalar and vector fields subject to spheroidal boundary conditions. For massless scalar fields and small ellipticity the zero-point energy can be found using both zeta function and Green's function methods. The result agrees with the conjecture that the zero point energy for a boundary remains constant under small deformations of the boundary that preserve volume (the boundary deformation conjecture), formulated in the case of an elliptic-cylindrical boundary. In the case of massless vector fields, an exact solution is not possible. We show that a zonal approximation disagrees with the result of the boundary deformation conjecture. Applying our results to the MIT bag model, we find that the zero point energy of the bag should stabilize the bag against deformations from a spherical shape.Comment: 24 pages, 3 figures. To appear in Phys. Rev.

    Parton Distributions for the Octet and Decuplet Baryons

    Get PDF
    We calculate the parton distributions for both polarized and unpolarized octet and decuplet baryons, using the MIT bag, dressed by mesons. We show that the hyperfine interaction responsible for the Δ−N\Delta - N and Σ0−Λ\Sigma^0 - \Lambda splittings leads to large deviations from SU(3) and SU(6) predictions. For the Λ\Lambda we find significant polarized, non-strange parton distributions which lead to a sizable Λ\Lambda polarization in polarized, semi-inclusive epep scattering. We also discuss the flavour symmetry violation arising from the meson-cloud associated with the chiral structure of baryons.Comment: 29 pages, 15 figure

    Role of the Delta (1232) in DIS on polarized 3^3He and extraction of the neutron spin structure function g1n(x,Q2)g_{1}^{n}(x,Q^2)

    Get PDF
    We consider the effect of the transitions n→Δ0n \to \Delta^{0} and p→Δ+p \to \Delta^{+} in deep inelastic scattering on polarized 3^3He on the extraction of the neutron spin structure function g1n(x,Q2)g_{1}^{n}(x,Q^2). Making the natural assumption that these transitions are the dominant non-nucleonic contributions to the renormalization of the axial vector coupling constant in the A=3 system, we find that the effect of Δ\Delta increases g1n(x,Q2)g_{1}^{n}(x,Q^2) by 10÷4010 \div 40% in the range 0.05≤x≤0.60.05 \le x \le 0.6, where our considerations are applicable and most of the data for g1n(x,Q2)g_{1}^{n}(x,Q^2) exist.Comment: 23 pages, 6 figures, revte

    Color Magnetic Corrections to Quark Model Valence Distributions

    Full text link
    We calculate order αs\alpha_s color magnetic corrections to the valence quark distributions of the proton using the Los Alamos Model Potential wavefunctions. The spin-spin interaction breaks the model SU(4) symmetry, providing a natural mechanism for the difference between the up and down distributions. For a value of αs\alpha_s sufficient to produce the N−ΔN-\Delta mass splitting, we find up and down quark distributions in reasonable agreement with experiment.Comment: 25 Pages, LA-UR-93-132

    Pions in the nuclear medium and Drell-Yan scattering

    Get PDF
    We investigate the modification of the pion-cloud in the nuclear medium and its effect on the nuclear Drell-Yan process. The pion's in-medium self-energy is calculated in a self-consistent delta-hole model, with particle-hole contribution also included. Both the imaginary and real part of the pion's and delta's self-energy are taken into account and related through a dispersion relation assuring causality. The resulting in-medium pion light-cone momentum distribution shows only a slight enhancement compared to the one of the free nucleon. As a consequence the ratio of the cross-section for Drell-Yan scattering on nuclear matter and nucleonic target is close to unity in agreement with experiment.Comment: 33 pages, Latex with epsf, figures included, to appear in Phys. Rev.
    • …
    corecore