54 research outputs found
Vortex Reconnection as the Dissipative Scattering of Dipoles
We propose a phenomenological model of vortex tube reconnection at high
Reynolds numbers. The basic picture is that squeezed vortex lines, formed by
stretching in the region of closest approach between filaments, interact like
dipoles (monopole-antimonopole pairs) of a confining electrostatic theory. The
probability of dipole creation is found from a canonical ensemble spanned by
foldings of the vortex tubes, with temperature parameter estimated from the
typical energy variation taking place in the reconnection process. Vortex line
reshuffling by viscous diffusion is described in terms of directional
transitions of the dipoles. The model is used to fit with reasonable accuracy
experimental data established long ago on the symmetric collision of vortex
rings. We also study along similar lines the asymmetric case, related to the
reconnection of non-parallel vortex tubes.Comment: 8 pages, 3 postscript figure
A scaling theory of 3D spinodal turbulence
A new scaling theory for spinodal decomposition in the inertial hydrodynamic
regime is presented. The scaling involves three relevant length scales, the
domain size, the Taylor microscale and the Kolmogorov dissipation scale. This
allows for the presence of an inertial "energy cascade", familiar from theories
of turbulence, and improves on earlier scaling treatments based on a single
length: these, it is shown, cannot be reconciled with energy conservation. The
new theory reconciles the t^{2/3} scaling of the domain size, predicted by
simple scaling, with the physical expectation of a saturating Reynolds number
at late times.Comment: 5 pages, no figures, revised version submitted to Phys Rev E Rapp
Comm. Minor changes and clarification
Superfluid vs Ferromagnetic Behaviour in a Bose Gas of Spin-1/2 Atoms
We study the thermodynamic phases of a gas of spin-1/2 atoms in the
Hartree-Fock approximation. Our main result is that, for repulsive or
weakly-attractive inter-component interaction strength, the superfluid and
ferromagnetic phase transitions occur at the same temperature. For
strongly-attractive inter-component interaction strength, however, the
ferromagnetic phase transition occurs at a higher temperature than the
superfluid phase transition. We also find that the presence of a condensate
acts as an effective magnetic field that polarizes the normal cloud. We finally
comment on the validity of the Hartree-Fock approximation in describing
different phenomena in this system.Comment: 10 pages, 2 figure
Critical Viscosity Exponent for Fluids: What Happend to the Higher Loops
We arrange the loopwise perturbation theory for the critical viscosity
exponent , which happens to be very small, as a power series in
itself and argue that the effect of loops beyond two is negligible.
We claim that the critical viscosity exponent should be very closely
approximated by .Comment: 9 pages and 3 figure
Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington's disease models
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD
Instabilities in a Two-Component, Species Conserving Condensate
We consider a system of two species of bosons of equal mass, with
interactions and for bosons of the same and different
species respectively. We present a rigorous proof -- valid when the Hamiltonian
does not include a species switching term -- showing that, when
, the ground state is fully "polarized" (consists of
atoms of one kind only). In the unpolarized phase the low energy excitation
spectrum corresponds to two linearly dispersing modes that are even a nd odd
under species exchange. The polarization instability is signaled by the vani
shing of the velocity of the odd modes.Comment: To appear in Phys. Rev.
Temperature dependent resistivity of spin-split subbands in GaAs 2D hole system
We calculate the temperature dependent resistivity in spin-split subbands
induced by the inversion asymmetry of the confining potential in GaAs 2D hole
systems. By considering both temperature dependent multisubband screening of
impurity disorder and hole-hole scattering we find that the strength of the
metallic behavior depends on the symmetry of the confining potential (i.e.,
spin-splitting) over a large range of hole density. At low density above the
metal-insulator transition we find that effective disorder reduces the
enhancement of the metallic behavior induced by spin-splitting. Our theory is
in good qualitative agreement with existing experiments
Two-subband electron transport in nonideal quantum wells
Electron transport in nonideal quantum wells (QW) with large-scale variations
of energy levels is studied when two subbands are occupied. Although the mean
fluctuations of these two levels are screened by the in-plane redistribution of
electrons, the energies of both levels remain nonuniform over the plane. The
effect of random inhomogeneities on the classical transport is studied within
the framework of a local response approach for weak disorder. Both short-range
and small-angle scattering mechanisms are considered. Magnetotransport
characteristics and the modulation of the effective conductivity by transverse
voltage are evaluated for different kinds of confinement potentials (hard wall
QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure
Numerical study of pattern formation following a convective instability in non-Boussinesq fluids
We present a numerical study of a model of pattern formation following a
convective instability in a non-Boussinesq fluid. It is shown that many of the
features observed in convection experiments conducted on gas can be
reproduced by using a generalized two-dimensional Swift-Hohenberg equation. The
formation of hexagonal patterns, rolls and spirals is studied, as well as the
transitions and competition among them. We also study nucleation and growth of
hexagonal patterns and find that the front velocity in this two dimensional
model is consistent with the prediction of marginal stability theory for one
dimensional fronts.Comment: 9 pages, report FSU-SCRI-92-6
Critical light scattering in liquids
We compare theoretical results for the characteristic frequency of the
Rayleigh peak calculated in one-loop order within the field theoretical method
of the renormalization group theory with experiments and other theoretical
results. Our expressions describe the non-asymptotic crossover in temperature,
density and wave vector. In addition we discuss the frequency dependent shear
viscosity evaluated within the same model and compare our theoretical results
with recent experiments in microgravity.Comment: 17 pages, 12 figure
- …