10 research outputs found

    Self-conditioned Embedding Diffusion for Text Generation

    Full text link
    Can continuous diffusion models bring the same performance breakthrough on natural language they did for image generation? To circumvent the discrete nature of text data, we can simply project tokens in a continuous space of embeddings, as is standard in language modeling. We propose Self-conditioned Embedding Diffusion, a continuous diffusion mechanism that operates on token embeddings and allows to learn flexible and scalable diffusion models for both conditional and unconditional text generation. Through qualitative and quantitative evaluation, we show that our text diffusion models generate samples comparable with those produced by standard autoregressive language models - while being in theory more efficient on accelerator hardware at inference time. Our work paves the way for scaling up diffusion models for text, similarly to autoregressive models, and for improving performance with recent refinements to continuous diffusion.Comment: 15 page

    Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination

    No full text
    An affine invariant representation is constructed with a cascade of invariants, which preserves information for classification. A joint translation and rotation invariant representation of image patches is calculated with a scattering transform. It is implemented with a deep convolution network, which computes successive wavelet transforms and modulus non-linearities. Invariants to scaling, shearing and small deformations are calculated with linear operators in the scattering domain. State-of-the-art classification results are obtained over texture databases with uncontrolled viewing conditions. 1

    Large-Scale Retrieval for Reinforcement Learning

    Full text link
    Effective decision making involves flexibly relating past experiences and relevant contextual information to a novel situation. In deep reinforcement learning, the dominant paradigm is for an agent to amortise information that helps decision-making into its network weights via gradient descent on training losses. Here, we pursue an alternative approach in which agents can utilise large-scale context-sensitive database lookups to support their parametric computations. This allows agents to directly learn in an end-to-end manner to utilise relevant information to inform their outputs. In addition, new information can be attended to by the agent, without retraining, by simply augmenting the retrieval dataset. We study this approach in Go, a challenging game for which the vast combinatorial state space privileges generalisation over direct matching to past experiences. We leverage fast, approximate nearest neighbor techniques in order to retrieve relevant data from a set of tens of millions of expert demonstration states. Attending to this information provides a significant boost to prediction accuracy and game-play performance over simply using these demonstrations as training trajectories, providing a compelling demonstration of the value of large-scale retrieval in reinforcement learning agents.Comment: Preprint, 16 page
    corecore