518 research outputs found

    in KKAy mice

    Get PDF
    and mechanisms of resveratrol on the amelioration of oxidative stress and hepatic steatosi

    Global and Individualized Community Detection in Inhomogeneous Multilayer Networks

    Full text link
    In network applications, it has become increasingly common to obtain datasets in the form of multiple networks observed on the same set of subjects, where each network is obtained in a related but different experiment condition or application scenario. Such datasets can be modeled by multilayer networks where each layer is a separate network itself while different layers are associated and share some common information. The present paper studies community detection in a stylized yet informative inhomogeneous multilayer network model. In our model, layers are generated by different stochastic block models, the community structures of which are (random) perturbations of a common global structure while the connecting probabilities in different layers are not related. Focusing on the symmetric two block case, we establish minimax rates for both \emph{global estimation} of the common structure and \emph{individualized estimation} of layer-wise community structures. Both minimax rates have sharp exponents. In addition, we provide an efficient algorithm that is simultaneously asymptotic minimax optimal for both estimation tasks under mild conditions. The optimal rates depend on the \emph{parity} of the number of most informative layers, a phenomenon that is caused by inhomogeneity across layers.Comment: Corrected a few typos. 96 pages (main manuscript: 27 pages, appendices: 69 pages), 5 figure

    Warp-centric GPU meta-meshing and fast triangulation of billion-scale lattice structures

    Full text link
    Lattice structures have been widely used in applications due to their superior mechanical properties. To fabricate such structures, a geometric processing step called triangulation is often employed to transform them into the STL format before sending them to 3D printers. Because lattice structures tend to have high geometric complexity, this step usually generates a large amount of triangles, a memory and compute-intensive task. This problem manifests itself clearly through large-scale lattice structures that have millions or billions of struts. To address this problem, this paper proposes to transform a lattice structure into an intermediate model called meta-mesh before undergoing real triangulation. Compared to triangular meshes, meta-meshes are very lightweight and much less compute-demanding. The meta-mesh can also work as a base mesh reusable for conveniently and efficiently triangulating lattice structures with arbitrary resolutions. A CPU+GPU asynchronous meta-meshing pipeline has been developed to efficiently generate meta-meshes from lattice structures. It shifts from the thread-centric GPU algorithm design paradigm commonly used in CAD to the recent warp-centric design paradigm to achieve high performance. This is achieved by a new data compression method, a GPU cache-aware data structure, and a workload-balanced scheduling method that can significantly reduce memory divergence and branch divergence. Experimenting with various billion-scale lattice structures, the proposed method is seen to be two orders of magnitude faster than previously achievable

    I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models

    Full text link
    Post-training quantization (PTQ) serves as a potent technique to accelerate the inference of large language models (LLMs). Nonetheless, existing works still necessitate a considerable number of floating-point (FP) operations during inference, including additional quantization and de-quantization, as well as non-linear operators such as RMSNorm and Softmax. This limitation hinders the deployment of LLMs on the edge and cloud devices. In this paper, we identify the primary obstacle to integer-only quantization for LLMs lies in the large fluctuation of activations across channels and tokens in both linear and non-linear operations. To address this issue, we propose I-LLM, a novel integer-only fully-quantized PTQ framework tailored for LLMs. Specifically, (1) we develop Fully-Smooth Block-Reconstruction (FSBR) to aggressively smooth inter-channel variations of all activations and weights. (2) to alleviate degradation caused by inter-token variations, we introduce a novel approach called Dynamic Integer-only MatMul (DI-MatMul). This method enables dynamic quantization in full-integer matrix multiplication by dynamically quantizing the input and outputs with integer-only operations. (3) we design DI-ClippedSoftmax, DI-Exp, and DI-Normalization, which utilize bit shift to execute non-linear operators efficiently while maintaining accuracy. The experiment shows that our I-LLM achieves comparable accuracy to the FP baseline and outperforms non-integer quantization methods. For example, I-LLM can operate at W4A4 with negligible loss of accuracy. To our knowledge, we are the first to bridge the gap between integer-only quantization and LLMs. We've published our code on anonymous.4open.science, aiming to contribute to the advancement of this field

    Joint-Motion Mutual Learning for Pose Estimation in Videos

    Full text link
    Human pose estimation in videos has long been a compelling yet challenging task within the realm of computer vision. Nevertheless, this task remains difficult because of the complex video scenes, such as video defocus and self-occlusion. Recent methods strive to integrate multi-frame visual features generated by a backbone network for pose estimation. However, they often ignore the useful joint information encoded in the initial heatmap, which is a by-product of the backbone generation. Comparatively, methods that attempt to refine the initial heatmap fail to consider any spatio-temporal motion features. As a result, the performance of existing methods for pose estimation falls short due to the lack of ability to leverage both local joint (heatmap) information and global motion (feature) dynamics. To address this problem, we propose a novel joint-motion mutual learning framework for pose estimation, which effectively concentrates on both local joint dependency and global pixel-level motion dynamics. Specifically, we introduce a context-aware joint learner that adaptively leverages initial heatmaps and motion flow to retrieve robust local joint feature. Given that local joint feature and global motion flow are complementary, we further propose a progressive joint-motion mutual learning that synergistically exchanges information and interactively learns between joint feature and motion flow to improve the capability of the model. More importantly, to capture more diverse joint and motion cues, we theoretically analyze and propose an information orthogonality objective to avoid learning redundant information from multi-cues. Empirical experiments show our method outperforms prior arts on three challenging benchmarks.Comment: 10 pages, 5 figure

    TPMS2STEP: error-controlled and C2 continuity-preserving translation of TPMS models to STEP files based on constrained-PIA

    Full text link
    Triply periodic minimal surface (TPMS) is emerging as an important way of designing microstructures. However, there has been limited use of commercial CAD/CAM/CAE software packages for TPMS design and manufacturing. This is mainly because TPMS is consistently described in the functional representation (F-rep) format, while modern CAD/CAM/CAE tools are built upon the boundary representation (B-rep) format. One possible solution to this gap is translating TPMS to STEP, which is the standard data exchange format of CAD/CAM/CAE. Following this direction, this paper proposes a new translation method with error-controlling and C2C^2 continuity-preserving features. It is based on an approximation error-driven TPMS sampling algorithm and a constrained-PIA algorithm. The sampling algorithm controls the deviation between the original and translated models. With it, an error bound of 2ϵ2\epsilon on the deviation can be ensured if two conditions called ϵ\epsilon-density and ϵ\epsilon-approximation are satisfied. The constrained-PIA algorithm enforces C2C^2 continuity constraints during TPMS approximation, and meanwhile attaining high efficiency. A theoretical convergence proof of this algorithm is also given. The effectiveness of the translation method has been demonstrated by a series of examples and comparisons

    Autophagy regulates the maturation of hematopoietic precursors in the embryo

    Get PDF
    An understanding of the mechanisms regulating embryonic hematopoietic stem cell (HSC) development would facilitate their regeneration. The aorta-gonad-mesonephros region is the site for HSC production from hemogenic endothelial cells (HEC). While several distinct regulators are involved in this process, it is not yet known whether macroautophagy (autophagy) plays a role in hematopoiesis in the pre-liver stage. Here, we show that different states of autophagy exist in hematopoietic precursors and correlate with hematopoietic potential based on the LC3-RFP-EGFP mouse model. Deficiency of autophagy-related gene 5 (Atg5) specifically in endothelial cells disrupts endothelial to hematopoietic transition (EHT), by blocking the autophagic process. Using combined approaches, including single-cell RNA-sequencing (scRNA-seq), we have confirmed that Atg5 deletion interrupts developmental temporal order of EHT to further affect the pre-HSC I maturation, and that autophagy influences hemogenic potential of HEC and the formation of pre-HSC I likely via the nucleolin pathway. These findings demonstrate a role for autophagy in the formation/maturation of hematopoietic precursors.</p
    corecore