2,014 research outputs found
Advanced control with a Cooper-pair box: stimulated Raman adiabatic passage and Fock-state generation in a nanomechanical resonator
The rapid experimental progress in the field of superconducting nanocircuits
gives rise to an increasing quest for advanced quantum-control techniques for
these macroscopically coherent systems. Here we demonstrate theoretically that
stimulated Raman adiabatic passage (STIRAP) should be possible with the
quantronium setup of a Cooper-pair box. The scheme appears to be robust against
decoherence and should be realizable even with the existing technology. As an
application we present a method to generate single-phonon states of a
nanomechnical resonator by vacuum-stimulated adiabatic passage with the
superconducting nanocircuit coupled to the resonator
Tangles of superpositions and the convex-roof extension
We discuss aspects of the convex-roof extension of multipartite entanglement
measures, that is, SL(2,\CC) invariant tangles. We highlight two key concepts
that contain valuable information about the tangle of a density matrix: the
{\em zero-polytope} is a convex set of density matrices with vanishing tangle
whereas the {\em convex characteristic curve} readily provides a non-trivial
lower bound for the convex roof and serves as a tool for constructing the
convex roof outside the zero-polytope. Both concepts are derived from the
tangle for superpositions of the eigenstates of the density matrix. We
illustrate their application by considering examples of density matrices for
two-qubit and three-qubit states of rank 2, thereby pointing out both the power
and the limitations of the concepts.Comment: 7 pages, 5 figures, revtex
Coherent tunneling by adiabatic passage in an optical waveguide system
We report on the first experimental demonstration of light transfer in an
engineered triple-well optical waveguide structure which provides a classic
analogue of Coherent Tunnelling by Adiabatic Passage (CTAP) recently proposed
for coherent transport in space of neutral atoms or electrons among
tunneling-coupled optical traps or quantum wells [A.D. Greentree et al., Phys.
Rev. B 70, 235317 (2004); K. Eckert et al., Phys. Rev. A 70, 023606 (2004)].
The direct visualization of CTAP wavepacket dynamics enabled by our simple
optical system clearly shows that in the counterintuitive passage scheme light
waves tunnel between the two outer wells without appreciable excitation of the
middle well.Comment: submitted for publicatio
Coherent oscillations in a Cooper-pair box
This paper is devoted to an analysis of the experiment by Nakamura {\it et
al.} (Nature {\bf 398}, 786 (1999)) on the quantum state control in Josephson
junctions devices. By considering the relevant processes involved in the
detection of the charge state of the box and a realistic description of the
gate pulse we are able to analyze some aspects of the experiment (like the
amplitude of the measurement current) in a quantitative way
A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer
The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.Peer Reviewe
The Wright ω Function
This paper defines the Wright ω function, and presents some of its properties. As well as being of intrinsic mathematical interest, the function has a specific interest in the context of symbolic computation and automatic reasoning with nonstandard functions. In particular, although Wright ω is a cognate of the Lambert W function, it presents a di#erent model for handling the branches and multiple values that make the properties of W difficult to work with. By choosing a form for the function that has fewer discontinuities (and numerical difficulties), we make reasoning about expressions containing such functions easier. A final point of interest is that some of the techniques used to establish the mathematical properties can themselves potentially be automated, as was discussed in a paper presented at AISC Madrid [3]
Charge Transport in Voltage-Biased Superconducting Single-Electron Transistors
Charge is transported through superconducting SSS single-electron transistors
at finite bias voltages by a combination of coherent Cooper-pair tunneling and
quasiparticle tunneling. At low transport voltages the effect of an ``odd''
quasiparticle in the island leads to a -periodic dependence of the current
on the gate charge. We evaluate the characteristic in the framework of a
model which accounts for these effects as well as for the influence of the
electromagnetic environment. The good agreement between our model calculation
and experimental results demonstrates the importance of coherent Cooper-pair
tunneling and parity effects.Comment: RevTeX, 12 pages, 4 figure
- …