41 research outputs found

    The temperature-jump problem for a variable collision frequency model

    Get PDF
    An analytical version of the discrete-ordinates method is used here in the field of rarefied-gas dynamics to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. In addition to a complete development of the discrete-ordinates method for the application considered, the computational algorithm is implemented to yield accurate numerical results for three specific cases: the classical BGK model, the Williams model (the collision frequency is proportional to the magnitude of the velocity), and the rigid-sphere model

    Gut microbiota composition as a candidate risk factor for dimethyl fumarate-induced lymphopenia in multiple sclerosis

    Full text link
    Mounting evidence points towards a pivotal role of gut microbiota in multiple sclerosis (MS) pathophysiology. Yet, whether disease-modifying treatments alter microbiota composition and whether microbiota shape treatment response and side-effects remain unclear. In this prospective observational pilot study, we assessed the effect of dimethyl fumarate (DMF) on gut microbiota and on host/microbial metabolomics in a cohort of 20 MS patients. Combining state-of-the-art microbial sequencing, metabolome mass spectrometry, and computational analysis, we identified longitudinal changes in gut microbiota composition under DMF-treatment and an increase in citric acid cycle metabolites. Notably, DMF-induced lymphopenia, a clinically relevant safety concern, was correlated with distinct baseline microbiome signatures in MS patients. We identified gastrointestinal microbiota as a key therapeutic target for metabolic properties of DMF. By characterizing gut microbial composition as a candidate risk factor for DMF-induced lymphopenia, we provide novel insights into the role of microbiota in mediating clinical side-effects

    PeRL:A circum-Arctic Permafrost Region Pond and Lake database

    Get PDF
    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104ĝ€m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5ĝ€m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6ĝ€m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106ĝ€km2 across the Arctic, about 17ĝ€% of the Arctic lowland ( < ĝ€300ĝ€mĝ€a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106ĝ€m2 down to 1. 0 × 102ĝ€m2 contributed up to 21ĝ€% to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101ĝ€kmĝ'2. Ponds are the dominant waterbody type by number in all landscapes representing 45-99ĝ€% of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including detailed metadata are available at https://doi.pangaea.de/10.1594/PANGAEA.868349

    Genetic and epigenetic characterization of posterior pituitary tumors

    Get PDF
    Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets

    Genetic and epigenetic characterization of posterior pituitary tumors

    Get PDF
    Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets

    CatĂĄlogo TaxonĂŽmico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the CatĂĄlogo TaxonĂŽmico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    The temperature-jump problem for a variable collision frequency model

    Get PDF
    An analytical version of the discrete-ordinates method is used here in the field of rarefied-gas dynamics to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. In addition to a complete development of the discrete-ordinates method for the application considered, the computational algorithm is implemented to yield accurate numerical results for three specific cases: the classical BGK model, the Williams model (the collision frequency is proportional to the magnitude of the velocity), and the rigid-sphere model

    2,2'-Bipyridine Equipped with a Disulfide/Dithiol Switch for Coupled Two Electron and Proton Transfer

    No full text
    [1,2]dithiino[4,3-b:5,6-bÂŽ]dipyridine (1) and its protonated open form 3,3ÂŽ-dithiol-2,2ÂŽ-bipyridine (2) were synthesised and their interconversion investigated. The X-ray structure of 2 revealed an anti orientation of the two pyridine units and a zwitterionic form. In depth electrochemical studies in combination with DFT calculations lead to a comprehensive picture of the redox chemistry of 1 in the absence and presence of protons. Initial one electron reduction at E1 = −1.97 V results in the formation of the radical anion 1red with much elongated S-S bond, which readily undergoes further reduction at E2 = −2.15 V. Water triggers a potential inversion (E ≄ −1.9 V for the second reduction) as the radical anion 1red is protonated at its basic N atom. DFT studies revealed that S−S bond breaking and twisting of the pyridine units generally occurs after the second reduction step while the potential inversion induced by protonation is a result of charge compensation. The CV data were simulated to derive rate constants for the individual chemical and electrochemical reactions for both scenarios in the absence and presence of protons.Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Instituto de QuĂ­mica del Noroeste. Universidad Nacional de TucumĂĄn. Facultad de BioquĂ­mica, QuĂ­mica y Farmacia. Instituto de QuĂ­mica del Noroeste; ArgentinaFil: Schiewer, Christine. UniversitĂ€t Göttingen; AlemaniaFil: Schober, Anne. UniversitĂ€t Göttingen; AlemaniaFil: Dechert, Sebastian. UniversitĂ€t Göttingen; AlemaniaFil: Siewert, Inke. UniversitĂ€t Göttingen; AlemaniaFil: Meyer, Franc. UniversitĂ€t Göttingen; Alemani

    Structural environments around molybdenum in silicate glasses and melts. I. Influence of composition and oxygen fugacity on the local structure of molybdenum

    No full text
    The coordination chemistry of molybdenum was investigated in nine series of synthetic silicate glasses, including sodium disilicate (NS2), sodium trisilicate (NS3), albite (Ab), anorthite (An), Ab50An50, Ab30An70, diopside (DI), rhyolite (RH), and basalt (BA), using electron paramagnetic resonance (EPR) and X-ray absorption fine structure (XAFS) spectroscopies. The Mo content of these glasses ranges from 300 ppm to 3 wt.%. On the basis of results derived from high-resolution X-ray absorption near-edge structure (XANES) spectroscopy, molybdenum is present primarily as molybdate moieties [Mo(VI)O42–] in most of the glass compositions prepared at f(O2) values ranging from 1 atm to 10–12 atm (temperatures ranging from 1100 to 1700°C, i.e., from air to IW+4). Analysis of extended XAFS (EXAFS) spectra of these glasses indicates an average Mo–O distance of ~1.76(1) Å. No evidence for second-neighbor Si or Al around Mo was found in any of the glasses, confirming that molybdate moieties are not connected to the tetrahedral framework, in agreement with Pauling bond-valence predictions. The presence of molybdate moieties in regions of these glasses enriched in network modifiers helps explain why crystalline molybdates can nucleate easily in silicate glasses (and, by extension, in the corresponding melts). In the highly polymerized glass compositions (such as “Ab” or “RH”), Mo(VI)O66– moieties also exist, but at minor levels (<20% of the total Mo). In glasses prepared at low f(O2) (near IW), reduced species of Mo occur, such as molybdenyl [Mo(V) and Mo(IV)]. In glasses prepared at even lower f(O2) (near IW+4), Mo is present as a metallic precipitate. The prevalence of molybdate moieties in silicate glasses until relatively low oxygen fugacities (IW) are achieved appears to be at variance with the fact that molybdenite, Mo(IV)S2, is the dominant Mo-bearing mineral in the Earth's crust. In a companion paper, we re-examine the speciation of molybdenum in more complex systems that are closer to geochemical reality, such as high-temperature melts, densified (high-pressure) glasses, and silicate glass compositions enriched in volatiles

    Structural environments around molybdenum in silicate glasses and melts. I. Influence of composition and oxygen fugacity on the local structure of molybdenum

    No full text
    The coordination chemistry of molybdenum was investigated in nine series of synthetic silicate glasses, including sodium disilicate (NS2), sodium trisilicate (NS3), albite (Ab), anorthite (An), Ab50An50, Ab30An70, diopside (DI), rhyolite (RH), and basalt (BA), using electron paramagnetic resonance (EPR) and X-ray absorption fine structure (XAFS) spectroscopies. The Mo content of these glasses ranges from 300 ppm to 3 wt.%. On the basis of results derived from high-resolution X-ray absorption near-edge structure (XANES) spectroscopy, molybdenum is present primarily as molybdate moieties [Mo(VI)O42–] in most of the glass compositions prepared at f(O2) values ranging from 1 atm to 10–12 atm (temperatures ranging from 1100 to 1700°C, i.e., from air to IW+4). Analysis of extended XAFS (EXAFS) spectra of these glasses indicates an average Mo–O distance of ~1.76(1) Å. No evidence for second-neighbor Si or Al around Mo was found in any of the glasses, confirming that molybdate moieties are not connected to the tetrahedral framework, in agreement with Pauling bond-valence predictions. The presence of molybdate moieties in regions of these glasses enriched in network modifiers helps explain why crystalline molybdates can nucleate easily in silicate glasses (and, by extension, in the corresponding melts). In the highly polymerized glass compositions (such as “Ab” or “RH”), Mo(VI)O66– moieties also exist, but at minor levels (<20% of the total Mo). In glasses prepared at low f(O2) (near IW), reduced species of Mo occur, such as molybdenyl [Mo(V) and Mo(IV)]. In glasses prepared at even lower f(O2) (near IW+4), Mo is present as a metallic precipitate. The prevalence of molybdate moieties in silicate glasses until relatively low oxygen fugacities (IW) are achieved appears to be at variance with the fact that molybdenite, Mo(IV)S2, is the dominant Mo-bearing mineral in the Earth's crust. In a companion paper, we re-examine the speciation of molybdenum in more complex systems that are closer to geochemical reality, such as high-temperature melts, densified (high-pressure) glasses, and silicate glass compositions enriched in volatiles
    corecore