709 research outputs found

    Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia

    Get PDF
    Deletion of exon 9 from Cullin‐3 (CUL3, residues 403–459: CUL3Δ403–459) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin‐RING‐ubiquitin‐ligase complexes. Bound to KLHL3, CUL3‐RBX1 ubiquitylates WNK kinases, promoting their ubiquitin‐mediated proteasomal degradation. Since WNK kinases activate Na/Cl co‐transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin‐RING‐ligase formation. We report here that the PHA2E mutant, CUL3Δ403–459, is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3Δ403–459 auto‐ubiquitylates and loses interaction with two important Cullin regulators: the COP9‐signalosome and CAND1. A novel knock‐in mouse model of CUL3WT/Δ403–459 closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases

    Crossbow Volume 1

    Get PDF
    Student Integrated ProjectIncludes supplementary materialDistributing naval combat power into many small ships and unmanned air vehicles that capitalize on emerging technology offers a transformational way to think about naval combat in the littorals in the 2020 time frame. Project CROSSBOW is an engineered systems of systems that proposes to use such distributed forces to provide forward presence to gain and maiantain access, to provide sea control, and to project combat power in the littoral regions of the world. Project CROSSBOW is the result of a yearlong, campus-wide, integrated research systems engineering effort involving 40 student researchers and 15 supervising faculty members. This report (Volume I) summarizes the CROSSBOW project. It catalogs the major features of each of the components, and includes by reference a separate volume for each of the major systems (ships, aircraft, and logistics). It also prresents the results of the mission and campaign analysis that informed the trade-offs between these components. It describes certain functions of CROSSBOW in detail through specialized supporting studies. The student work presented here is technologically feasible, integrated and imaginative. The student project cannot by itself provide definitive designs or analyses covering such a broad topic. It does strongly suggest that the underlying concepts have merit and deserve further serious study by the Navy as it transforms itself

    Phenotypic and pharmacogenetic evaluation of patients with thiazide-induced hyponatremia.

    Get PDF
    Thiazide diuretics are among the most widely used treatments for hypertension, but thiazide-induced hyponatremia (TIH), a clinically significant adverse effect, is poorly understood. Here, we have studied the phenotypic and genetic characteristics of patients hospitalized with TIH. In a cohort of 109 TIH patients, those with severe TIH displayed an extended phenotype of intravascular volume expansion, increased free water reabsorption, urinary prostaglandin E2 excretion, and reduced excretion of serum chloride, magnesium, zinc, and antidiuretic hormone. GWAS in a separate cohort of 48 TIH patients and 2,922 controls from the 1958 British birth cohort identified an additional 14 regions associated with TIH. We identified a suggestive association with a variant in SLCO2A1, which encodes a prostaglandin transporter in the distal nephron. Resequencing of SLCO2A1 revealed a nonsynonymous variant, rs34550074 (p.A396T), and association with this SNP was replicated in a second cohort of TIH cases. TIH patients with the p.A396T variant demonstrated increased urinary excretion of prostaglandin E2 and metabolites. Moreover, the SLCO2A1 phospho-mimic p.A396E showed loss of transporter function in vitro. These findings indicate that the phenotype of TIH involves a more extensive metabolic derangement than previously recognized. We propose one mechanism underlying TIH development in a subgroup of patients in which SLCO2A1 regulation is altered.This work was supported by an Academy of Medical Sciences grant for clinical lecturers (to JSW and MG), British Heart Foundation grant PG/09/089 (to KMO), the National Institute for Health Research (NIHR) Royal Brompton Cardiovascular Biomedical Research Unit (to JSW and SC), the Fondation Leducq (to JSW and SC), and the British Heart Foundation (to JSW and SC). MDT holds a Medical Research Council Senior Clinical Fellowship (G0902313). This work was supported by the Medical Research Council (grant numbers G510364 and G1000861). This research used the ALICE and SPECTRE High Performance Computing Facilities at the University of Leicester

    Crop Updates 2000 - Weeds

    Get PDF
    This session covers thirty six papers from different authors: INTRODUCTION, Vanessa Stewart Agriculture Western Australia INTEGRATED WEED MANAGEMENT Effect of seeding density, row spacing and Trifluralin on the competitive ability of Annual Ryegrass in a minimum tillage system, David Minkey, Abul Hashem, Glen Riethmuller and Martin Harries, Agriculture Western Australia High wheat seeding rates coupled with narrow row spacing increases yield and suppresses grass, Peter Newman1 and Cameron Weeks2,1Agronomist, Elders Limited 2Mingenew/Irwin Group Resistant ryegrass management in a wheat – lupin rotation, Abul Hashem, Harmohinder S. Dhammu, Aik Cheam, David Bowran and Terry Piper, Agriculture Western Australia Integrated weed management – Will it work with my rotation? Alexandra Wallace, Agriculture Western Australia Long term herbicide resistance trial – Mingenew, Peter Newman Elders, Cameron Weeks Mingenew-Irwin Group Is two years enough? Bill Roy, Agricultural Consulting and Research Services The fate of ryegrass seed when sheep graze chaff cart heaps, Keith L. Devenish1 and Lisa J. Leaver2 1 Agriculture Western Australia, 2Curtin University of Technology, Muresk Institute of Agriculture Can blanket wiping and crop topping prevent seed set of resistant wild radish and mustard? StAbul Hashem, Harmohinder Dhammu, Vanessa Stewart, Brad Rayner and Mike Collins, Agriculture Western Australia The value of green manuring in the integrated management of ryegrass, Marta Monjardino1,2, David Pannell2, Stephen Powles1 ,1Western Australia Herbicide Resistance Initiative, 2Agricultural and Resource Economics, University of Western Australia Some ways of increasing wheat competitiveness against ryegrass,, Mike Collins Centre for Cropping Systems, Agriculture Western Australia WEED BIOLOGY Understanding and driving weed seed banks to very low levels, Sally Peltzer, Agriculture Western Australi HERBICIDE RESISTANCE Cross resistance of chlorsulfuron-resistant wild radish to imidazolinones, Abul Hashem, Harmohinder Dhammu and David Bowran, Agriculture Western Australia Investigation of suspected triazine resistant ryegrass populations for cross-resistance and multiple resistance to herbicides, Michael Walsh, Charles Boyle and Stephen Powles, Western Australian Herbicide Resistance Initiative, University of Western Australia Genetics and fitness of glyphosate resistant ryegrass, S. Powles1, P. Neve1, D. Lorraine-Colwill2, C. Preston2 ,1WAHRI, University of Western Australia 2 CRC Weed Management Systems, University of Adelaide Managing herbicide resistance – the effect of local extinction of resistance genes, Art Diggle1, Paul B. Neve2, Stephen B. Powles2 ,1Agriculture Western Australia, 2WAHRI, Faculty of Agriculture, University of Western Australia The double knock - the best strategy for conserving glyphosate susceptibility? Paul B. Neve1, Art Diggle2, Stephen B. Powles1,1WAHRI, Faculty of Agriculture, University of Western Australia, 2Agriculture Western Australia Wild radish had evolved resistance to triazines, Abul Hashem, Harmohinder S. Dhammu, David Bowran and Aik Cheam, Agriculture Western Australia Ryegrass resistance in Western Australia – where and how much? Rick Llewellyn and Stephen Powles, Western Australian Herbicide Resistance Initiative, Faculty of Agriculture, University of Western Australia Wild radish herbicide resistance survey, Michael Walsh, Ryan Duane and Stephen Powles, Western Australian Herbicide Resistance Initiative, University of Western Australia Knockdown resistance in the Western Australian wheatbelt – a proposed survey, Paul B. Neve1, Abul Hashem2, Stephen B. Powles1,1Western Australian Herbicide Resistance Initiative, University of Western Australia, 2Agriculture Western Australia Diflufenican resistant wild radish, Aik Cheam, Siew Lee, David Bowran, David Nicholson and Abul Hashem, Agriculture Western Australi Multiple resistance to triazines and diflufenican further complicates wild radish control, Aik Cheam, Siew Lee, David Bowran, David Nicholson and Abul Hashem, Agriculture Western Australia HERBICIDE TOLERANCE 25. Herbicide tolerance of lupins, Terry Piper, Weed Science Group, Agriculture Western Australia 26. Tanjil lupins will tolerate metribuzin under the right conditions, Peter Newman, Agronomist Elders Limited and Cameron Weeks, Mingenew/Irwin Group 27. Herbicide damage does not mean lower yield in Lupins, Peter Carlton, Trials Coordinator, Elders Limited 28. Herbicide tolerance of new pea varieties, Dr Terry Piper, Agriculture Western Australia 29. Herbicide tolerance of (waterlogged) wheat, Dr Terry Piper, Agriculture Western Australia 30. Wheat tolerance trials – Mingenew 1999, Peter Newman1, Cameron Weeks2 and Stewart Smith3,1Elders, Mingenew, 2Mingenew-Irwin Group,3Agriculture Western Australia ISSUES OF TRIFLURALIN USE 31. Trifluralin works better on ryegrass when no-tilling into thick wheat stubbles as granules, or mixed with limesand, Bill Crabtree, WANTFA Scientific Officer 32. Increasing trifluralin rate did not compensate for delaying incorporation, Bill Crabtree, WANTFA Scientific Officer 33. Poor emergence survey, 1999, Terry Piper, Weed Science Group, Agriculture Western Australia HERBICIDES – ISSUES AND OPTIONS 34. AFFINITY 400DF – A new herbicide with a new mode of action (Group G) for Broadleaf Weed Control in Cereals, Gordon Cumming, Technical Officer, Crop Care Australasia 35 Herbicide screening for Marshmallow, David Minkey1 and David Cameron2,1Agriculture Western Australia, 2Elders Ltd, Merredin 36. The control of Capeweed in Clearfield Production System for Canola, Mike Jackson and Scott Paton, Cyanamid Agriculture Pty Ltd 37.Effect of herbicides TordonĂ€ 75D and LontrelĂ€,used for eradication of Skeleton Weed, on production of Lupins I the following seasons, John R. Peirce and Brad J. Rayner, Agriculture Western Australia INDUSTRY PROTECTION 38. Graingaurd – Opportunities for agribusiness to help protect the West Australian grains industry, Greg Shea, Executive Officer, GrainGuard Agriculture Western Australi

    Crop Updates 2001 - Weeds

    Get PDF
    This session covers forty six papers from different authors: 1. INTRODUCTION, Vanessa Stewart, Agriculture Western Australia PLENARY 2. Wild radish – the implications for our rotations, David Bowran, Centre for Cropping Systems INTEGRATED WEED MANAGEMENT IWM system studies/demonstration sites 3. Integrated weed management: Cadoux, Alexandra Wallace, Agriculture Western Australia 4. A system approach to managing resistant ryegrass, Bill Roy, Agricultural Consulting and Research Services Pty Ltd, York 5. Long term herbicide resistance demonstration, Peter Newman, Agriculture Western Australia, Cameron Weeks, Tony Blake and Dave Nicholson 6. Integrated weed management: Katanning, Alexandra Wallace, Agriculture Western Australia 7. Integrated weed management: Merredin, Vanessa Stewart, Agriculture Western Australia 8. Short term pasture phases for weed control, Clinton Revell and Candy Hudson, Agriculture Western Australia Weed biology – implications for IWM 9. Competitivness of wild radish in a wheat-lupin rotation , Abul Hashem, Nerys Wilkins, and Terry Piper, Agriculture Western Australia 10. Population explosion and persistence of wild radish in a wheat-lupin rotation, Abul Hashem, Nerys Wilkins, Aik Cheam and Terry Piper , Agriculture Western Australia 11. Variation is seed dormancy and management of annual ryegrass, Amanda Ellery and Ross Chapman, CSIRO 12. Can we eradicate barley grass, Sally Peltzer, Agriculture Western Australia Adoption and modelling 13. Where to with RIM? Vanessa Stewart1 and Robert Barrett-Lennard2, 1Agriculture Western Australia, 2Western Australian Herbicide Resistance Initiative (WAHRI) 14. Multi-species RIM model, Marta Monjardino1,2, David Pannell2 and Stephen Powles1 1Western Australian Herbicide Resistance Initiative (WAHRI), 2ARE, University of Western Australia 15. What causes WA grain growers to adopt IWM practices? Rick Llewellyn, WAHRI/ARE, Faculty of Agriculture, University of WA New options for IWM? 16. Fuzzy tramlines for more yield and less weeds, Paul Blackwell Agriculture Western Australia, and Maurice Black, Harbour Lights Estate, Geraldton 17. Inter-row knockdowns for profitable lupins, Paul Blackwell, Agriculture Western Australia and Miles Obst, Farmer Mingenew 18. Row cropping and weed control in lupins, Mike Collins and Julie Roche, Agriculture Western Australia 19. Cross seedimg suppresses annual ryegrass and increases wheat yield, Abul Hashem, Dave Nicholson and Nerys Wilkins Agriculture Western Australia 20. Weed control by chaff burial, Mike Collins, Agriculture Western Australia HERBICIDE RESISTANCE 21. Resistance in wild oats to Fop and Dim herbicides in Western Australia, Abul Hashem and Harmohinder Dhammu, Agriculture Western Australia 22. Triazine and diflufenican resistance in wild radish: what it means to the lupin industry, Aik Cheam, Siew Lee, David Nicholson and Peter Newman, Agriculture Western Australia 23. Comparison if in situ v seed testing for determining herbicide resistance, Bill Roy, Agricultural Consulting and Research Services Pty Ltd, York HERBICIDE TOLERANCE 24. Phenoxy herbicide tolerance of wheat, Peter Newman and Dave Nicholson, Agriculture Western Australia 25. Tolerance of wheat to phenoxy herbicides, Harmohinder S. Dhammu, Terry Piper and Mario F. D\u27Antuono, Agriculture Western Australia 26. Herbicide tolerance of new wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia 27. Herbicide tolerance of durum wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia 28. Herbicide tolerance of new field pea varieties, Harmohinder S. Dhammu, Terry Piper, David F. Nicholson, and Mario F. D\u27Antuono, Agriculture Western Australia 29. Herbicide tolerance of Cooke field peas on marginal soil, Harmohinder S. Dhammu, Terry Piper, David F. Nicholson, and Mario F. D\u27Antuono, Agriculture Western Australia 30. Herbicide tolerance of some annual pasture legumes adapted to coarse textured sandy soils, Clinton Revell and Ian Rose, Agriculture Western Australia 31 Herbicide tolerance of some annual pasture legumes adapted to fine textured clay soils, Clinton Revell and Ian Rose, Agriculture Western Australia WEED CONTROL IN LUCERNE 32. Management of weeds for Lucerne establishment, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 33. Management of weeds in the second year of Lucerne, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 34. Residual effects of weed management in the third year of Lucerne, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 35. Herbicide tolerance and weed control in Lucerne, Peter Newman, Dave Nicholson and Keith Devenish Agriculture Western Australia HERBICIDES – NEW PRODUCTS/PRODUCE USES; USE New products or product use 36. New herbicide options for canola, John Moore and Paul Matson, Agriculture Western Australia 37. Chemical broadleaf weed management in Peaola, Shannon Barraclough and Lionel Martin, Muresk Institute of Agriculture, Curtin University of Technology 38. Balance¼ - a new broad leaf herbicide for the chickpea industry, Mike Clarke, Jonas Hodgson and Lawrence Price, Aventis CropScience 39. Marshmallow – robust herbicide strategies, Craig Brown, IAMA Agribusiness 40. Affinity DF – a prospective option for selective in-crop marshmallow control, Gordon Cumming, Technical Officer, Crop Care Australasia 41. A new formulation of Carfentrazone-ethyl for pre-seeding knockdown control of broadleaved weeds including Marshmallow, Gordon Cumming, Technical Officer, Crop Care Australasia Herbicide use 42. Autumn applied trifluralin can be effective! Bill Crabtree, Scientific Officer, Western Australian No-Tillage Farmers Association 43. Which knockdown herbicide for small ryegrass? Peter Newman and Dave Nicholson, Agriculture Western Australia 44. Poor radish control with Group D herbicides in lupins, Peter Newman and Dave Nicholson, Agriculture Western Australia WEED ISSUES 45. Distribution and incidence of aphids and barley yellow dwarf virus in over-summering grasses in the WA wheatbelt, Jenny Hawkes and Roger Jones, CLIMA and Agriculture Western Australia 46. e-weed, Vanessa Stewart, Agriculture Western Australia CONTRIBUTING AUTHOR CONTACT DETAIL

    Cardio-renal cachexia syndromes (CRCS): pathophysiological foundations of a vicious pathological circle

    Get PDF
    Cardio-renal syndromes (CRS) are defined as disorders of the heart and kidney whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. CRS have been classified into five categories, where types 2 and 4 represent respectively chronic cardio-renal and chronic reno-cardiac syndromes. In these conditions, the chronic disorder of either the heart or kidney has been shown to induce some degree of cachexia. At the same time, cachexia has been proposed as a possible mechanism contributing to the worsening of such pathological organ cross talk. Common pathogenetic mechanisms underlie body wasting in cachectic states of different chronic heart and kidney diseases. In these circumstances, a vicious circle could arise, in which cachexia associated with either heart failure or chronic kidney disease may contribute to further damage of the other organ. In chronic CRS, activation of the immune and neuroendocrine systems contributes to the genesis of cachexia, which in turn can negatively affect the heart and kidney function. In patients with cardiac sustained activation of the immune and neuroendocrine systems and oxidative stress, renal vascular resistance can increase and therefore impair renal perfusion, leading to worsening kidney function. Similarly, in renal cachexia, increased levels of pro-inflammatory cytokines can cause progressive left ventricular systolic dysfunction, myocardial cell death, endothelial dysfunction and increased myocardial fibrosis, with consequent impairment of the chronic reno-cardiac syndrome type 4. Thus, we speculate that the occurrence of different types of chronic CRS could represent a fundamental step in the genesis of cachexia, being renal and cardiac dysfunction closely related to the occurrence of systemic disorders leading to a final common pathway. Therefore, the heart and kidney and cachexia represent a triad causing a vicious circle that increases mortality and morbidity: In such circumstances, we may plausibly talk about cardio-renal cachexia syndrome. Complex interrelations may explain the transition from CRS to cachexia and from cachexia to CRS. Identification of the exact mechanisms occurring in these conditions could potentially help in preventing and treating this deadly combination

    Crop Updates 2002 - Weeds

    Get PDF
    This session covers fifty eight papers from different authors: 1. INTRODUCTION Vanessa Stewart, DEPARTMENT OF AGRICULTURE INTEGRATED WEED MANAGEMENT IWM system studies / demonstration sites 2. Major outcomes from IWM demonstration sites, Alexandra Douglas Department of Agriculture 3. Integrated weed management: Katanning, Alexandra Douglas Department of Agriculture 4. Integrated weed management: Merredin, Vanessa Stewart Department of Agriculture 5. Long term resistance site: Get ryegrass numbers low and keep them low! Peter Newman and Glen Adams Department of Agriculture 6. Using pastures to manage ryegrass populations, Andrew Blake and Natalie Lauritsen Department of Agriculture Weed biology and competition 7. Understanding the weed seed bank life if important agricultural weeds, Sally Peltzer and Paul Matson Department of Agriculture 8. Consequence of radish competition on lupin nutrients in wheat-lupin rotation, Abul Hashem and Nerys Wilkins Department of Agriculture 9. Consequence of ryegrass competition on lupin nutrients in a wheat-lupin rotation, Abul Hashem and Nerys Wilkins Department of Agriculture 10. Brome grass too competitive for early sown wheat in a dry year at Mullewa, Peter Newman and Glenn Adam Department of Agriculture Crop establishment and weed management 11. Seeding rate, row spacing and herbicides for weed control, David Minkey Department of Agriculture 12. Effect of different seeding methods on wheat and ryegrass, Abul Hashem, Glen Riethmuller and Nerys Wilkins Department of Agriculture 13. Role of tillage implements and trifluralin on the effectiveness of the autumn tickle for stimulating annual ryegrass emergence, Tim Cusack1, Kathryn Steadman1 and Abul Hashem2,1Western Australia Herbicide Resistance Initiative, UWA; 2Department of Agriculture, 14. Timing of autumn tickle in important for non-wetting soils, Pippa Michael1, Peter Newman2 and Kathryn Steadman 2, 1Western Australia Herbicide Resistance Initiative, UWA, 2Department of Agriculture 15. Early investigation into weed seed burial by mouldboard plough, Sally Peltzer and Alex Douglas Department of Agriculture 16. Rolling post-emergent lupins to improve weed emergence and control on loamy sand, Paul Blackwell, Department of Agriculture and Dave Brindal, Strawberry via Mingenew IWM tools 17. Crop topping in 2001: How did we do? Peter Newman and Glenn Adam Department of Agriculture 18. Wickwipers work! Peter Newman and Glenn Adam Department of Agriculture 19. Wild radish and ryegrass seed collection at harvest: Chaff carts and other devices, Michael Walsh Western Australia Herbicide Resistance Initiative, UWA and Wayne Parker Department of Agriculture 20. Improving weed control in grazed pastures using legumes with low palatability, Clinton Revell, Giles Glasson Department of Agriculture, and Dean Thomas Faculty of Agriculture, University of Western Australia Adoption and modelling 21. Grower weed survey, Peter Newman and Glenn Adam Department of Agriculture 22. Agronomist survey, Peter Newman and Glenn Adam Department of Agriculture 23. Ryegrass RIM model stands the test of IWM field trial data, Alister Draper Western Australia Herbicide Resistance Initiative, UWA and Bill Roy, Western Australia Herbicide Resistance Initiative, UWA Agricultural Consulting and Research Services 24. Multi-species RIM: An update, Marta Monjardin1,2, David Pannell2 and Stephen Powles 1, 1Western Australia Herbicide Resistance Initiative, UWA, 2 ARE, University of Western Australia 25. RIM survey feedback, Robert Barrett-Lennard and Alister Draper Western Australia Herbicide Resistance Initiative, UWA 26. Effect of historic input and product prices on choice of ryegrass management strategies, Alister Draper1 and Martin Bent2, 1Western Australia Herbicide Resistance Initiative, UWA, 2Muresk Institute of Agriculture 27. Living with ryegrass – trading off weed control and economic performance, Martin Bent1 and Alister Draper2 , 1Muresk Institute of Agriculture, Curtin University, 2Western Australia Herbicide Resistance Initiative, UWA HERBICIDE RESISTANCE 28. Glyphosate resistance in WA and Australia: Where are we at? Paul Neve1, Art Diggle2, Patrick Smith3, Mechelle Owen1, Abul Hashem2, Christopher Preston4and Stephen Powles1,1Western Australian Herbicide Resistance Initiative, University of Western Australia, 2Department of Agriculture, 3CSIRO Sustainable Ecosystems, 4CRC for Australian Weed Management and Department of Applied and Molecular Ecology, Waite Campus, University of Adelaide 29. We need you weeds: A survey of knockdown resistance in the WA wheatbelt, Paul Neve1, Mechelle Owen1, Abul Hashem2 and Stephen Powles1 1Western Australian Herbicide Resistance Initiative, University of Western Australia, 2Department of Agriculture 30. A test for resistance testing, Mechelle Owen, Tracey Gillam, Rick Llewellyn and Steve Powles,Western Australia Herbicide Resistance Initiative, University of Western Australia 31. In field testing for herbicide resistance, a purpose built multi-treatment spray boom with results from 2001, Richard Quinlan, Elders Ltd 32. Advantages and limitations of a purpose built multi-treatment spray boom, Richard Quinlan, Elders Ltd 33. Group F resistant wild radish: What’s new? Aik Cheam, Siew Lee Department of Agriculture, and Mike Clarke Aventis Crop Science 34. Cross resistance of Brodal¼ resistant wild radish to Sniper¼, Aik Cheam and Siew Lee, Department of Agriculture 35. Managing a biotype of wild radish with Group F and Group C resistance, Aik Cheam, Siew Lee, David Nicholson, Peter Newman Department of Agriculture and Mike Clarke, Aventis Crop Science HERBICIDE TOLERANCE 36. Herbicide tolerance of new wheat varieties, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Agriculture Western Australia 37. Response of barley varieties to herbicides, Harmohinder S. Dhammu, Terry Piper, Department of Agriculture 38. Tolerance of barley to phenoxy herbicides, Harmohinder S. Dhammu, Terry Piper, Department of Agriculture and Chad Sayer, Nufarm Australia Limited 39. Response of Durum wheats to herbicides, Harmohinder S. Dhammu, Terry Piper, Department of Agriculture 40. Response of new field pea varieties to herbicides, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture 41. Herbicide tolerance of Desi chickpeas on marginal soil, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture 42. Herbicide tolerance of newer lupin varieties, Terry Piper, Harmohinder Dhammu and David Nicholson, Department of Agriculture 43. Herbicide tolerance of some annual pasture legumes, Clinton Revell and Ian Rose, Department of Agriculture 44. Herbicide tolerance of pasture legumes, Andrew Blake, Department of Agriculture HERBICIDES – NEW PRODUCTS/PRODUCT USES; USE 45. Knockdown herbicides do not reliably kill small grass weeds, Peter Newman and Glenn Adam, Department of Agriculture 46. ‘Hair Cutting’ wheat with Spray.Seed¼: Does it work? Peter Newman and Glenn Adam, Department of Agriculture 47. ‘Haircutting’: Does the number one cut work? Robert Barrett-Lennard1 and Jerome Critch2,1WA Herbicide Resistance Initiative, University of WA, 2Student, University of WA 48. Hammer EC (Carfentrazone-ethyl): A mixing partner for glyphosate to enhance the control of difficult broadleaf weeds, Gordon R. Cumming, Crop Care Australasia 49. Marshmallow control in reduced tillage systems, Sam Taylor, Wesfarmers Landmark 50. Herbicide options for summer germinating marshmallow, Vanessa Stewart, Department of Agriculture 51. Dual Gold¼ safe in a dry year at Coorow, Peter Newman and Glenn Adam, Department of Agriculture 52. The effect of glyphosate, paraquat and diquat as a crop topping application on the germination of barley, John Moore and Roslyn Jettner, Department of Agriculture 53. Herbicide options for melon control, Vanessa Stewart, Department of Agriculture 54. Herbicide options for the control of Chloris truncate (windmill grass) Vanessa Stewart, Department of Agriculture 55. Allelopathic effects of crop, pasture and weed residues on subsequent crop and pasture establishment, Stuart Bee1, Lionel Martin1, Keith Devenish2 and Terry Piper2, 1Muresk Institute of Agriculture, Curtin University of Technology, Northam, Western Australia, 2Centre for Cropping Systems, Department of Agriculture WEED ISSUES 56. Role of Roundup ReadyÒ canola in the farming system, Art Diggle1, Patrick Smith2, Paul Neve3, Felicity Flugge4, Amir Abadi5 and Stephen Powles3, 1Department of Agriculture; 2CSIRO, Sustainable Ecosystems; 3Western Australian Herbicide Resistance Initiative; 4Centre for Legumes in Mediterranean Agriculture; 5Touchstone Consulting 57. ’Weeds for Feed’ and livestock enterprise structures: A feasibility study and farmer survey in the north-easern wheatbelt, Duncan Peter and Stuart McAlpine, Department of Agriculture and Liebe Group, Buntine 58. e-weed, Vanessa Stewart, Agriculture Western Australi

    Crop Updates 2002 - Geraldton

    Get PDF
    This session covers twenty seven papers from different authors: 1. Taking the Why out of Wyalkatchem – the new widely adapted wheat variety, Steve Penny Jr, Department of Agriculture 2. Future wheat varieties, Robin Wilson, Iain Barclay,Robyn McLean, Robert Loughman, Jenny Garlinge, Bill Lambe, Neil Venn and Peter Clarke Department of Agriculture 3. Maximising wheat variety performance through agronomic management, Wal Anderson, Raffaele Del Cima, James Bee, Darshan Sharma, Sheena Lyon, Melaine Kupsch, Mohammad Amjad, Pam Burgess, Veronika Reck, Brenda Shackley, Ray Tugwell, Bindi Webb and Steve Penny Jr Department of Agriculture 4. Cereal rust update 2002 – a new stem rust on Camm wheat, Robert Loughman1and Robert Park2 1Department of Agriculture, 2University of Sydney 5. Influence of nutrition and environmental factors on seed vigour in wheat, Darshan Sharma, Wal Anderson and Daya Patabendige, Department of Agriculture 6. Cereal aphids and direct feeding damage to cereals, Phil Michael, Department of Agriculture 7. A decision support system for control of aphids and BYDV in cereal crops, Debbie Thackray, Jenny Hawkes and Roger Jones, Department of Agriculture and Centre for Legumes in Mediterranean Agriculture 8. Summary of 2001 weather and seasonal prospects for 2002, David Stephens, Department of Agriculture 9. Towards a management package for grain protein in lupins, Bob French, Senior Research Officer, Department of Agriculture 10. Lupin genotypes respond differently to potash, Bob French and Laurie Wahlsten, Senior Research Officer and Technical Officer, Department of Agriculture 11. Time of harvest for improved seed yield of pulses, G. Riethmuller and B. French, Department of Agriculture 12. Comparing the phosphorus requirement of field pea and wheat, M. Bolland and P. White, Department of Agriculture Western Australia 13. Field pea variety evaluation, T. Khan, Department of Agriculture Western Australia 14. Diamondback moth (DBM) in canola, Kevin Walden, Department of Agriculture 15. WA blackleg resistance ratings on canola varieties for 2002, Ravjit Khangura, Martin J. Barbetti and Graham Walton, Department of Agriculture 16. The effect of single or multiple spray treatments on the control of Diamondback moth (Plutella xylostella) and yield of canola at Wongan Hills, Françoise Berlandier, Paul Carmody and Christiaan Valentine, Department of Agriculture 17. Perennial pastures in annual cropping systems: Lucerne and beyond, Roy Latta and Keith Devenish, Department of Agriculture 18. Nutrition in 2002: Decisions to be made as a result of last season, Bill Bowden,Department of Agriculture 19. Profitability of deep banding lime, Michael O\u27Connell, Chris Gazey and David Gartner, Department of Agriculture 20. Economic comparisons of farming systems for the medium rainfall northern sandplain, Caroline Peek and David Rogers, Department of Agriculture 21. The use of Twist Fungus as a biosecurity measure against Annual Ryegrass Toxicity (ARGT), Greg Shea, GrainGuard Coordinator and George Yan, Biological and Resource Technology 22. Major outcomes from IWM demonstration sites, Alexandra Douglas, Department of Agriculture 23. Understanding the weed seed bank life of important agricultural weeds, Sally Peltzer and Paul Matson, Department of Agriculture 24. Seeding rate, row spacing and herbicides for weed control, David Minkey, Department of Agriculture 25. Improving weed control in grazed pastures using legumes with low palatability, Clinton Revell and Giles Glasson, Department of Agriculture, Dean Thomas, Faculty of Agriculture, University of Western Australia 26. Group F resistant wild radish: What’s new? Aik Cheam1, Siew Lee1and Mike Clarke2, 1Department of Agriculture WA, 2Aventis Crop Science 27. Knockdown herbicides do not reliably kill small grass weeds, Peter Newman and Glenn Adam, Department of Agricultur

    Space omics research in Europe: contributions, geographical distribution and ESA member state funding schemes

    Get PDF
    18 p.-3 fig.-1 graph. abst.The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed towards our current understanding of spaceflight biology. Recent molecular biology experiments include “omic” analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review we: i) identified and summarised omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.All listed authors are members of the ESA Space Omics Topical Team, funded by the ESA grant/contract 4000131202/20/NL/PG/pt “Space Omics: Towards an integrated ESA/NASA –omics database for spaceflight and ground facilities experiments” awarded to RH, which was the main funding source for this work. Individual authors also acknowledge support from: the Medical Research Council part of a Skills Development Fellowship [grant number MR/T026014/1] awarded to CSD; the Spanish CAM TALENTO program project 2020-5A_BIO-19724 to MAFR; the Spanish Plan Estatal de Investigación Científica y Desarrollo Tecnológico Grant RTI2018-099309-B-I00 to FJM, the Swedish Research Council VR grant 2020-04864 to SG and the French Centre National d'Etudes Spatiales grant DAR 2020-4800001004, 2021-4800001117 to ECD. This research was also funded in part by the Wellcome Trust [110182/Z/15/Z] to KS.Peer reviewe
    • 

    corecore