3,894 research outputs found
A triple GEM detector with two dimensional readout
The triple GEM detector is a micropattern gas detector which consists of a
primary ionisation gap and three consecutive gas electron multiplier (GEM)
foils. A printed circuit board with readout strips detects the current induced
by the drifting electron cloud originating from the last GEM stage. Thus the
gas amplification and the signal readout are completely separated. Triple GEM
detectors are being developed as a possible technology for the inner tracking
in the LHCb experiment.
In an earlier note we have reported first experience with such a detector in
a test beam at PSI. Here we describe the construction of an improved version
(thinner transfer gaps, segmented GEM foils, two dimensional readout). Results
from performance measurements are presented using intense hadronic beams as
well as cosmic ray data.Comment: 20 pages, 24 figure
A Stationary Target for the CERN-Neutrino-Factory
As production target for Neutron Factories, free mercury jets with high axial velocity of about 20Â m/s are being studied. For the CERN-Neutrino-Factory proposal with a 4 MW beam power, but with a relatively large beam size at 2.2 GeV/c and pulsed at 75 Hz, maximum energy deposition densities of below 20 J/g and average power densities of about 1 kW/g are expected. Therefore a study has been made which discusses the feasibility and limits of a confined, stationary target cooled by a liquid. It is proposed to use solid spheres of high density material with diameters in the millimeter range. These spheres are confined inside a Titanium container and cooled by an efficient water circuit. Alternatively, low density liquid metal cooling could be used. Dynamic response, as pressure pulses and vibrations are greatly reduced by the small size of the target granules in combination with a relatively long beam pulse with a duration of 3.3 ms. The open issue of the lifetime of such as structure and its fatigue limit at a rate of 6.5 Mio. cycles per day must be assessed experimentally. Efforts should be invested in devising laboratory experiments simulating the beam conditions to optimize the design and to elucidate the limiting factors of such a target
Response of Solid and Liquid Targets to High Power Proton Beams for Neutrino Factories
The response of solid and liquid targets to rapid heating by the incident proton beam is assessed in a classical way, among other things by solving the wave equation under linear conditions and in cylindrical symmetry. This study provides bench mark values and allows to identify critical issues and limiting factors which can help to guide further investigations with more sophisticated means
A He-gas Cooled, Stationary Granular Target
In the CERN approach to the design of a neutrino factory, the repetition frequency of the proton beam is high enough to consider stationary solid targets as a viable solution for multi-MW beams. The target consists of high density tantalum spheres of 2 mm diameter which can efficiently be cooled by passing a high mass flow He-gas stream through the voids between the Ta-granules. Very small thermal shocks and stresses will arise in this fine grained structure due to the relatively long burst of 3.3 ms from the SPL-proton linac. In a quadruple target system where each target receives only one quarter of the total beam power of 4 MW, conservative temperature levels and adequate lifetimes of the target are estimated in its very high radiation environment. A conceptual design of the integration of the target into the magnetic horn-pion-collector is presented
The dust SED in the dwarf galaxy NGC 1569: Indications for an altered dust composition?
We discuss the interpretation of the dust SED from the mid-infrared to the
millimeter range of NGC 1569. The model developed by D\'esert et al. (1990)
including three dust components (Polyaromatic Hydrocarbons, Very Small Grains
and big grains) can explain the data using a realistic interstellar radiation
field and adopting an enhanced abundance of VSGs. A simple three-temperature
model is also able to reproduce the data but requires a very low dust
temperature which is considered to be unlikely in this low-metallicity
starburst galaxy. The high abundance of Very Small Grains might be due to large
grain destruction in supernova shocks. This possibility is supported by ISO
data showing that the emission at 14.3 m, tracing VSGs, is enhanced with
respect to the emission at 6.7 m and 850 m in regions of high star
formation.Comment: 4 pages, conference proceedings paper, "The Spectral Energy
Distribution of Gas-Rich Galaxies: Confronting Models with Data", Heidelberg,
4-8 Oct. 2004, eds. C.C. Popescu & R.J. Tuffs, AIP Conf. Ser., in pres
Validation of a Computer Code for Use in the Mechanical Design of Spallation Neutron Targets
The present work concentrates on comparing a numerical code and a closed-form analytic solution for determining transient stress waves generated by an impinging, high-intensity proton pulse onto a perfectly elastic solid cylindrical target. The comparison of the two methods serves both to benchmark the physics and numerical methods of the codes, and to verify them against analytic expressions that can be established for calculating the response of the target for simple cases of loading and geometry. Additionally, the comparison elucidated the effects of approximations used in the computation of the analytic results. Two load cases have been investigated: (1) an instantaneously uniform thermal loading along the central core, and (2) a ramped and uniform thermal load applied along the central core. In addition, the influence of the approximations applied to the accurate analytic forms has been elucidated. By validating these analytical results, the closed-form solution may be confidently used to "bound" the solution prior to initiating more detailed and comprehensive numerical studies
Insect (Arthropoda: Insecta) Composition in the Diet of Ornate Box Turtles (Terrapene ornata ornata) in Two Western Illinois Sand Prairies, with a New State Record for Cyclocephala (Coleoptera: Scarabaeidae)
A study of fecal samples collected over a two-year period from juvenile ornate box turtles (Terrapene ornata ornata Agassiz) revealed diets consisting of six orders of insects representing 19 families. Turtles were reared in captivity from eggs harvested from local, wild populations, and released at two remnant prairies. Identifiable insect fragments were found in 94% of samples in 2013 (n=33) and 96% in 2014 (n=25). Frequency of occurrence of insects in turtle feces is similar to results reported in previous studies of midwestern Terrapene species. A comparison of insect composition presented no significant difference between release sites. There is no significant difference in consumed insect species between turtles released into or outside of a fenced enclosure at the same site. Specimens of Cyclocephala longula LeConte collected during this study represent a new state record for Illinois
Driven Intrinsic Localized Modes in a Coupled Pendulum Array
Intrinsic localized modes (ILMs), also called discrete breathers, are
directly generated via modulational instability in an array of coupled
pendulums. These ILMs can be stabilized over a range of driver frequencies and
amplitudes. They are characterized by a pi-phase difference between their
center and wings. At higher driver frequencies, these ILMs are observed to
disintegrate via a pulsating instability, and the mechanism of this breather
instability is investigated.Comment: 5 pages, 6 figure
Towards wafer scale inductive determination of magnetostatic and dynamic parameters of magnetic thin films and multilayers
We investigate an inductive probe head suitable for non-invasive
characterization of the magnetostatic and dynamic parameters of magnetic thin
films and multilayers on the wafer scale. The probe is based on a planar
waveguide with rearward high frequency connectors that can be brought in close
contact to the wafer surface. Inductive characterization of the magnetic
material is carried out by vector network analyzer ferromagnetic resonance.
Analysis of the field dispersion of the resonance allows the determination of
key material parameters such as the saturation magnetization MS or the
effective damping parameter Meff. Three waveguide designs are tested. The
broadband frequency response is characterized and the suitability for inductive
determination of MS and Meff is compared. Integration of such probes in a wafer
prober could in the future allow wafer scale in-line testing of magnetostatic
and dynamic key material parameters of magnetic thin films and multilayers
- …