18 research outputs found

    Fission widths of hot nuclei from Langevin dynamics

    Get PDF
    Fission dynamics of excited nuclei is studied in the framework of Langevin equation. The one body wall-and-window friction is used as the dissipative force in the Langevin equation. In addition to the usual wall formula friction, the chaos weighted wall formula developed earlier to account for nonintegrability of single-particle motion within the nuclear volume is also considered here. The fission rate calculated with the chaos weighted wall formula is found to be faster by about a factor of two than that obtained with the usual wall friction. The systematic dependence of fission width on temperature and spin of the fissioning nucleus is investigated and a simple parametric form of fission width is obtained.Comment: RevTex, 12 pages including 9 Postscript figure

    Prescission neutron multiplicity and fission probability from Langevin dynamics of nuclear fission

    Get PDF
    A theoretical model of one-body nuclear friction which was developed earlier, namely the chaos-weighted wall formula, is applied to a dynamical description of compound nuclear decay in the framework of the Langevin equation coupled with statistical evaporation of light particles and photons. We have used both the usual wall formula friction and its chaos-weighted version in the Langevin equation to calculate the fission probability and prescission neutron multiplicity for the compound nuclei 178^{178}W, 188^{188}Pt, 200^{200}Pb, 213^{213}Fr, 224^{224}Th, and 251^{251}Es. We have also obtained the contributions of the presaddle and postsaddle neutrons to the total prescission multiplicity. A detailed analysis of our results leads us to conclude that the chaos-weighted wall formula friction can adequately describe the fission dynamics in the presaddle region. This friction, however, turns out to be too weak to describe the postsaddle dynamics properly. This points to the need for a suitable explanation for the enhanced neutron emission in the postsaddle stage of nuclear fission.Comment: RevTex, 14 pages including 5 Postscript figures, results improved by using a different potential, conclusions remain unchanged, to appear in Phys. Rev.

    Fission Hindrance in hot 216Th: Evaporation Residue Measurements

    Full text link
    The fusion evaporation-residue cross section for 32S+184W has been measured at beam energies of E_beam = 165, 174, 185, 196, 205, 215, 225, 236, 246,and 257 MeV using the ATLAS Fragment Mass Analyzer. The data are compared with Statistical Model calculations and it is found that a nuclear dissipation strength, which increases with excitation energy, is required to reproduce the excitation function. A comparison with previously published data show that the dissipation strength depends strongly on the shell structure of the nuclear system.Comment: 15 pages 9 figure

    Large-scale ICU data sharing for global collaboration: the first 1633 critically ill COVID-19 patients in the Dutch Data Warehouse

    Get PDF

    Effect of nuclear dissipation on neutron emission prior to fission

    No full text
    corecore