41 research outputs found

    MliR, a novel MerR-like regulator of iron homeostasis, impacts metabolism, membrane remodeling, and cell adhesion in the marine Bacteroidetes Bizionia argentinensis

    Get PDF
    The MerR family is a group of transcriptional activators with conserved N-terminal helix-turn-helix DNA binding domains and variable C-terminal effector binding regions. In most MerR proteins the effector binding domain (EBD) contains a cysteine center suited for metal binding and mediates the response to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. We here present a novel transcriptional regulator classified in the MerR superfamily that lacks an EBD domain and has neither conserved metal binding sites nor cysteine residues. This regulator from the psychrotolerant bacteria Bizionia argentinensis JUB59 is involved in iron homeostasis and was named MliR (MerR-like iron responsive Regulator). In silico analysis revealed that homologs of the MliR protein are widely distributed among different bacterial species. Deletion of the mliR gene led to decreased cell growth, increased cell adhesion and filamentation. Genome-wide transcriptomic analysis showed that genes associated with iron homeostasis were downregulated in mliR-deletion mutant. Through nuclear magnetic resonance-based metabolomics, ICP-MS, fluorescence microscopy and biochemical analysis we evaluated metabolic and phenotypic changes associated with mliR deletion. This work provides the first evidence of a MerR-family regulator involved in iron homeostasis and contributes to expanding our current knowledge on relevant metabolic pathways and cell remodeling mechanisms underlying in the adaptive response to iron availability in bacteria.Fil: Pellizza Pena, Leonardo Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Bialer, Magali Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Aran, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence

    Get PDF
    Brucella species are Gram-negative, facultative intracellular pathogens responsible for a worldwide zoonosis. The envelope of Brucella exhibits unique characteristics that make these bacteria furtive pathogens and resistant to several host defence compounds. We have identified a Brucella suis gene (mapB) that appeared to be crucial for cell envelope integrity. Indeed, the typical resistance of Brucella to both lysozyme and the cationic lipopeptide polymyxin B was markedly reduced in a ∆mapB mutant. MapB turned out to represent a TamB orthologue. This last protein, together with TamA, a protein belonging to the Omp85 family, form a complex that has been proposed to participate in the translocation of autotransporter proteins across the outer membrane (OM). Accordingly, we observed that MapB is required for proper assembly of an autotransporter adhesin in the OM, as most of the autotransporter accumulated in the mutant cell periplasm. Both assessment of the relative amounts of other specific outer membrane proteins (OMPs) and a proteome approach indicated that the absence of MapB did not lead to an extensive alteration in OMP abundance, but to a reduction in the relative amounts of a protein subset, including proteins from the Omp25/31 family. Electron microscopy revealed that ∆mapB cells exhibit multiple anomalies in cell morphology, indicating that the absence of the TamB homologue in B. suis severely affects cell division. Finally, ∆mapB cells were impaired in macrophage infection and showed an attenuated virulence phenotype in the mouse model. Collectively, our results indicate that the role of B. suis TamB homologue is not restricted to participating in the translocation of autotransporters across the OM but that it is essential for OM stability and protein composition and that it is involved in cell envelope biogenesis, a process that is inherently coordinated with cell division.Fil: Bialer, Magali Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ruiz, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Sycz, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Estein, Silvia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Russo, Daniela Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Altabe, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Zorreguieta, Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in Acinetobacter baumannii to Enhance Cytotoxicity and Immune Evasion

    Get PDF
    The CCAAT box-harboring proteins represent a family of heterotrimeric transcription factors which is highly conserved in eukaryotes. In fungi, one of the particularly important homologs of this family is the Hap complex that separates the DNA-binding domain from the activation domain and imposes essential impacts on regulation of a wide range of cellular functions. So far, a comprehensive summary of this complex has been described in filamentous fungi but not in the yeast. In this review, we summarize a number of studies related to the structure and assembly mode of the Hap complex in a list of representative yeasts. Furthermore, we emphasize recent advances in understanding the regulatory functions of this complex, with a special focus on its role in regulating respiration, production of reactive oxygen species (ROS) and iron homeostasis.Fil: Nyah, Rodman. California State University; Estados UnidosFil: Martinez, Jasmine. California State University; Estados UnidosFil: Fung, Sammie. California State University; Estados UnidosFil: Nakanouchi, Jun. California State University; Estados UnidosFil: Myers, Amber L.. California State University; Estados UnidosFil: Harris, Caitlin M.. California State University; Estados UnidosFil: Dang, Emily. California State University; Estados UnidosFil: Fernandez, Jennifer. California State University; Estados UnidosFil: Liu, Christine. California State University; Estados UnidosFil: Mendoza, Anthony M.. California State University; Estados UnidosFil: Jimenez, Verónica. California State University; Estados UnidosFil: Nikolaidis, Nikolas. California State University; Estados UnidosFil: Brennan, Catherine A.. California State University; Estados UnidosFil: Bonomo, Robert A.. Louis Stokes Cleveland Department of Veterans Affairs Medical Cente; Estados Unidos. Center for Antimicrobial Resistance and Epidemiology; Estados Unidos. Case Western Reserve University School of Medicine; Estados UnidosFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ramirez, Maria Soledad. California State University; Estados Unido

    Human fluids alter DNA-acquisition in Acinetobacter baumannii

    Get PDF
    Transformation is one of the mechanisms of acquisition of foreign genetic material leading to the emergence of multidrug resistant (MDR) bacteria. Recently, human serum albumin (HSA) was shown to specifically increase transformation frequency in the nosocomial pathogen Acinetobacter baumannii. To further assess the relevance of HSA as a possible modulator of A. baumannii transformation in host-pathogen interactions, in this work we examined the effect of different human fluids. We observed a significant increase in transformation frequencies in the presence of pleural fluid, whole blood cells and liquid ascites, and to a lesser extent with urine. The observed effects correlate with both HSA and bacterial content found in the assayed patient fluids. Taken together, these results are in agreement with our previous findings that highlight HSA as a possible host signal with the ability to trigger natural transformation in A. baumannii.Fil: Martinez, Jasmine. California State University; Estados UnidosFil: Liu, Christine. California State University; Estados UnidosFil: Rodman, Nyah. California State University; Estados UnidosFil: Fernandez, Jennifer S.. California State University; Estados UnidosFil: Barberis, Claudia. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Perez, Federico. Louis Stokes Cleveland Department of Veterans Affairs Medical Center; Estados UnidosFil: Bonomo, Robert A.. Louis Stokes Cleveland Department of Veterans Affairs Medical Center; Estados Unidos. Case Western Reserve University; Estados UnidosFil: Ramirez, Maria Soledad. California State University; Estados Unido

    Design, Fabrication and Characterization

    Get PDF
    Funding Information: This work was financed by national funds from FCT, Fundação para a Ciência e a Tecnologia, I.P., in the scope of the projects LA/P/0037/2020, UIDP/50025/2020, and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication, i3N, and also under project dPCR4FreeDNA of the same research unit, PTDC/BTM-SAL/31201/2017. Furthermore, the work received funding from FCT in the scope of projects UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences, UCIBIO, and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy, i4HB. B. J. Coelho acknowledges FCT for the attribution of grant SFRH/BD/132904/2017 and grant COVID/BD/152453/2022. Publisher Copyright: © 2023 by the authors.Microfluidic-based platforms have become a hallmark for chemical and biological assays, empowering micro- and nano-reaction vessels. The fusion of microfluidic technologies (digital microfluidics, continuous-flow microfluidics, and droplet microfluidics, just to name a few) presents great potential for overcoming the inherent limitations of each approach, while also elevating their respective strengths. This work exploits the combination of digital microfluidics (DMF) and droplet microfluidics (DrMF) on a single substrate, where DMF enables droplet mixing and further acts as a controlled liquid supplier for a high-throughput nano-liter droplet generator. Droplet generation is performed at a flow-focusing region, operating on dual pressure: negative pressure applied to the aqueous phase and positive pressure applied to the oil phase. We evaluate the droplets produced with our hybrid DMF–DrMF devices in terms of droplet volume, speed, and production frequency and further compare them with standalone DrMF devices. Both types of devices enable customizable droplet production (various volumes and circulation speeds), yet hybrid DMF–DrMF devices yield more controlled droplet production while achieving throughputs that are similar to standalone DrMF devices. These hybrid devices enable the production of up to four droplets per second, which reach a maximum circulation speed close to 1540 µm/s and volumes as low as 0.5 nL.publishersversionpublishe

    Human serum albumin (HSA) regulates the expression of histone-like nucleoid structure protein (H-NS) in Acinetobacter baumannii

    Get PDF
    According to the Centers for Disease Control and Prevention, Acinetobacter baumannii is listed among the most threatening pathogens. A. baumannii is mainly a nosocomial pathogen with a distinctive ability to survive in multiple environments. These characteristics together with this bacterium’s ability to acquire antibiotic resistance determinants make it a notorious pathogen. The presence of human serum albumin (HSA) is associated with modifcation of expression levels in numerous genes. The presence of HSA in the culture medium is also correlated with a reduction in levels of the global suppressor histone-like nucleoid structure protein, H-NS. Comparative transcriptome analysis of the wild type and isogenic Δhns strains cultured in lysogeny broth (LB) in the presence or absence of HSA revealed that the expression of a subset of eleven genes are modifed in the Δhns cultured in LB and the wild-type strain in the presence of HSA, pointing out these genes as candidates to be regulated by the presence of HSA through H-NS. Six and fve of these genes were up- or down-regulated, respectively. Three of these genes have functions in quorum sensing (acdA, kar and fadD), one in quorum quenching (aidA), two in stress response (katE, ywrO), three in metabolism (phaC, yedL1, and yedL2), one in bioflm formation (csuAB), and one in β-oxidation of fatty acids (fadA). The regulation of these genes was assessed by: (i) transcriptional analysis and qPCR at the transcriptional level; and (ii) by determining the phenotypic characteristics of each function. The results of these studies support the hypothesis that HSA-mediated reduction of H-NS levels may be one very important regulatory circuit utilized by A. baumannii to adapt to selected environments, such as those where HSAcontaining human fuids are abundant.Fil: Escalante, Jenny. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Nishimura, Brent. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Pimentel, Camila. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Georgeos, Nardin. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Tomalsky, Marcelo E. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Ramírez, María Soledad. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Tuttobene, Marisel Romina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Área Biología Molecular; Argentina.Fil: Tuttobene, Marisel Romina. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR); Argentina.Fil: Subils, Tomás. Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ-CONICET-UNR); Argentina.Fil: Sieira, Rodrigo. Fundación Instituto Leloir (IIBBA-CONICET); ArgentinaFil: Bonomo, Robert A. Research Service and GRECC. Louis Stokes Cleveland Department of Veterans Affairs Medical Center; United States.Fil: Bonomo, Robert A. Case Western Reserve University School of Medicine. Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics. Departments of Medicine; United States.Fil: Bonomo, Robert A. CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology ; United States

    Involvement of the histone-like nucleoid structuring protein (H-ns) in acinetobacter baumannii’s natural transformation

    Get PDF
    Most Acinetobacter baumannii strains are naturally competent. Although some information is available about factors that enhance or reduce the frequency of the transformation of this bacterium, the regulatory elements and mechanisms are barely understood. In this article, we describe studies on the role of the histone-like nucleoid structuring protein, H-NS, in the regulation of the expression of genes related to natural competency and the ability to uptake foreign DNA. The expression levels of the natural transformation-related genes pilA, pilT, pilQ, comEA, comEC, comF, and drpA significantly increased in a ∆hns derivative of A. baumannii A118. The complementation of the mutant with a recombinant plasmid harboring hns restored the expression levels of six of these genes (pilT remained expressed at high levels) to those of the wild-type strain. The transformation frequency of the A. baumannii A118 ∆hns strain was significantly higher than that of the wild-type. Similar, albeit not identical, there were consequences when hns was deleted from the hypervirulent A. baumannii AB5075 strain. In the AB5075 complemented strain, the reduction in gene expression in a few cases was not so pronounced that it reached wild-type levels, and the expression of comEA was enhanced further. In conclusion, the expression of all seven transformation-related genes was enhanced after deleting hns in A. baumannii A118 and AB5075, and these modifications were accompanied by an increase in the cells’ transformability. The results highlight a role of H-NS in A. baumannii’s natural competence.Fil: Le, Casin. California State University; Estados UnidosFil: Pimentel, Camila. California State University; Estados UnidosFil: Tuttobene, Marisel Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Subils, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; ArgentinaFil: Escalante, Jenny. California State University; Estados UnidosFil: Nishimura, Brent. California State University; Estados UnidosFil: Arriaga, Susana. California State University; Estados UnidosFil: Rodgers, Deja. California State University; Estados UnidosFil: Bonomo, Robert A.. Center for Antimicrobial Resistance and Epidemiology; Estados Unidos. Veterans Affairs Medical Center; Estados Unidos. Case Western Reserve University School of Medicine; Estados UnidosFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Tolmasky, Marcelo E.. California State University; Estados UnidosFil: Ramírez, María Soledad. California State University; Estados Unido

    The H-NS regulator plays a role in the stress induced by carbapenemase expression in acinetobacter baumannii

    Get PDF
    Disruption of the histone-like nucleoid structuring protein (H-NS) was shown to affect the ability of Gram-negative bacteria to regulate genes associated with virulence, persistence, stress response, quorum sensing, biosynthesis pathways, and cell adhesion. Here, we used the expression of metallo-β-lactamases (MBLs), known to elicit envelope stress by the accumulation of toxic precursors in the periplasm, to interrogate the role of H-NS in Acinetobacter baumannii, together with other stressors. Using a multidrug-resistant A. baumannii strain, we observed that H-NS plays a role in alleviating the stress triggered by MBL toxic precursors and counteracts the effect of DNA-damaging agents, supporting its role in stress response. IMPORTANCE Carbapenem-resistant A. baumannii (CRAB) is recognized as one of the most threatening Gram-negative bacilli. H-NS is known to play a role in controlling the transcription of a variety of different genes, including those associated with the stress response, persistence, and virulence. In the present work, we uncovered a link between the role of H-NS in the A. baumannii stress response and its relationship with the envelope stress response and resistance to DNA-damaging agents. Overall, we posit a new role of H-NS, showing that H-NS serves to endure envelope stress and could also be a mechanism that alleviates the stress induced by MBL expression in A. baumannii. This could be an evolutionary advantage to further resist the action of carbapenems.Fil: Huang, Fanny. California State University. College Of Natural Science And Mathematics; Estados UnidosFil: Fitchett, Noelle. California State University. College Of Natural Science And Mathematics; Estados UnidosFil: Razo Gutierrez, Chelsea. California State University. College Of Natural Science And Mathematics; Estados UnidosFil: Le, Casin. California State University. College Of Natural Science And Mathematics; Estados UnidosFil: Martinez, Jasmine. California State University. College Of Natural Science And Mathematics; Estados UnidosFil: Ra, Grace. California State University. College Of Natural Science And Mathematics; Estados UnidosFil: Lopez, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gonzalez, Lisandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Bonomo, Robert A.. Louis Stokes Cleveland Va Medical Center; Estados Unidos. Case Western Reserve University School of Medicine; Estados UnidosFil: Ramirez, Maria Soledad. California State University. College Of Natural Science And Mathematics; Estados Unido

    Histone-like nucleoid-structuring protein (H-NS) regulatory role in antibiotic resistance in Acinetobacter baumannii

    Get PDF
    In the multidrug resistant (MDR) pathogen Acinetobacter baumannii the global repressor H-NS was shown to modulate the expression of genes involved in pathogenesis and stress response. In addition, H-NS inactivation results in an increased resistance to colistin, and in a hypermotile phenotype an altered stress response. To further contribute to the knowledge of this key transcriptional regulator in A. baumannii behavior, we studied the role of H-NS in antimicrobial resistance. Using two well characterized A. baumannii model strains with distinctive resistance profile and pathogenicity traits (AB5075 and A118), complementary transcriptomic and phenotypic approaches were used to study the role of H-NS in antimicrobial resistance, biofilm and quorum sensing gene expression. An increased expression of genes associated with β-lactam resistance, aminoglycosides, quinolones, chloramphenicol, trimethoprim and sulfonamides resistance in the Δhns mutant background was observed. Genes codifying for efflux pumps were also up-regulated, with the exception of adeFGH. The wild-type transcriptional level was restored in the complemented strain. In addition, the expression of biofilm related genes and biofilm production was lowered when the transcriptional repressor was absent. The quorum network genes aidA, abaI, kar and fadD were up-regulated in Δhns mutant strains. Overall, our results showed the complexity and scope of the regulatory network control by H-NS (genes involved in antibiotic resistance and persistence). These observations brings us one step closer to understanding the regulatory role of hns to combat A. baumannii infections.Fil: Rodgers, Deja. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Le, Casin. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Pimentel, Camila. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Tuttobene, Marisel Romina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Área Biología Molecular; Argentina.Fil: Tuttobene, Marisel Romina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Subils, Tomás. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ-CONICET); Argentina.Fil: Escalante, Jenny. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Nishimura, Brent. California State University Fullerton. College of Natural Sciences and Mathematics. Department of Biological Science. Center for Applied Biotechnology Studies; United States.Fil: Vescovi, Eleonora García. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Sieira, Rodrigo. Fundación Instituto Leloir (IIBBA-CONICET); Argentina.Fil: Bonomo, Robert A. Louis Stokes Cleveland. Department of Veterans Affairs Medical Center. Research Service and GRECC; United States.Fil: Bonomo, Robert A. Case Western Reserve University School of Medicine. Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; United States.Fil: Bonomo, Robert A. CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES); United States

    Expression of VjbR under Nutrient Limitation Conditions Is Regulated at the Post-Transcriptional Level by Specific Acidic pH Values and Urocanic Acid

    Get PDF
    VjbR is a LuxR homolog that regulates transcription of many genes including important virulence determinants of the facultative intracellular pathogen Brucella abortus. This transcription factor belongs to a family of regulators that participate in a cell-cell communication process called quorum sensing, which enables bacteria to respond to changes in cell population density by monitoring concentration of self produced autoinducer molecules. Unlike almost all other LuxR-type proteins, VjbR binds to DNA and activates transcription in the absence of any autoinducer signal. To investigate the mechanisms by which Brucella induces VjbR-mediated transcriptional activation, and to determine how inappropriate spatio-temporal expression of the VjbR target genes is prevented, we focused on the study of expression of vjbR itself. By assaying different parameters related to the intracellular lifestyle of Brucella, we identified a restricted set of conditions that triggers VjbR protein expression. Such conditions required the convergence of two signals of different nature: a specific pH value of 5.5 and the presence of urocanic acid, a metabolite involved in the connection between virulence and metabolism of Brucella. In addition, we also observed an urocanic acid, pH-dependent expression of RibH2 and VirB7, two additional intracellular survival-related proteins of Brucella. Analysis of promoter activities and determination of mRNA levels demonstrated that the urocanic acid-dependent mechanisms that induced expression of VjbR, RibH2, and VirB7 act at the post-transcriptional level. Taken together, our findings support a model whereby Brucella induces VjbR-mediated transcription by modulating expression of VjbR in response to specific signals related to the changing environment encountered within the host
    corecore