2,455 research outputs found
Flexible Stereo: Constrained, Non-rigid, Wide-baseline Stereo Vision for Fixed-wing Aerial Platforms
This paper proposes a computationally efficient method to estimate the
time-varying relative pose between two visual-inertial sensor rigs mounted on
the flexible wings of a fixed-wing unmanned aerial vehicle (UAV). The estimated
relative poses are used to generate highly accurate depth maps in real-time and
can be employed for obstacle avoidance in low-altitude flights or landing
maneuvers. The approach is structured as follows: Initially, a wing model is
identified by fitting a probability density function to measured deviations
from the nominal relative baseline transformation. At run-time, the prior
knowledge about the wing model is fused in an Extended Kalman filter~(EKF)
together with relative pose measurements obtained from solving a relative
perspective N-point problem (PNP), and the linear accelerations and angular
velocities measured by the two inertial measurement units (IMU) which are
rigidly attached to the cameras. Results obtained from extensive synthetic
experiments demonstrate that our proposed framework is able to estimate highly
accurate baseline transformations and depth maps.Comment: Accepted for publication in IEEE International Conference on Robotics
and Automation (ICRA), 2018, Brisban
Safe Local Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial Vehicles
In order to enable Micro-Aerial Vehicles (MAVs) to assist in complex,
unknown, unstructured environments, they must be able to navigate with
guaranteed safety, even when faced with a cluttered environment they have no
prior knowledge of. While trajectory optimization-based local planners have
been shown to perform well in these cases, prior work either does not address
how to deal with local minima in the optimization problem, or solves it by
using an optimistic global planner.
We present a conservative trajectory optimization-based local planner,
coupled with a local exploration strategy that selects intermediate goals. We
perform extensive simulations to show that this system performs better than the
standard approach of using an optimistic global planner, and also outperforms
doing a single exploration step when the local planner is stuck. The method is
validated through experiments in a variety of highly cluttered environments
including a dense forest. These experiments show the complete system running in
real time fully onboard an MAV, mapping and replanning at 4 Hz.Comment: Accepted to ICRA 2018 and RA-L 201
Nonlinear Model Predictive Control for Multi-Micro Aerial Vehicle Robust Collision Avoidance
Multiple multirotor Micro Aerial Vehicles sharing the same airspace require a
reliable and robust collision avoidance technique. In this paper we address the
problem of multi-MAV reactive collision avoidance. A model-based controller is
employed to achieve simultaneously reference trajectory tracking and collision
avoidance. Moreover, we also account for the uncertainty of the state estimator
and the other agents position and velocity uncertainties to achieve a higher
degree of robustness. The proposed approach is decentralized, does not require
collision-free reference trajectory and accounts for the full MAV dynamics. We
validated our approach in simulation and experimentally.Comment: Video available on: https://www.youtube.com/watch?v=Ot76i9p2ZZo&t=40
Obstacle-aware Adaptive Informative Path Planning for UAV-based Target Search
Target search with unmanned aerial vehicles (UAVs) is relevant problem to
many scenarios, e.g., search and rescue (SaR). However, a key challenge is
planning paths for maximal search efficiency given flight time constraints. To
address this, we propose the Obstacle-aware Adaptive Informative Path Planning
(OA-IPP) algorithm for target search in cluttered environments using UAVs. Our
approach leverages a layered planning strategy using a Gaussian Process
(GP)-based model of target occupancy to generate informative paths in
continuous 3D space. Within this framework, we introduce an adaptive replanning
scheme which allows us to trade off between information gain, field coverage,
sensor performance, and collision avoidance for efficient target detection.
Extensive simulations show that our OA-IPP method performs better than
state-of-the-art planners, and we demonstrate its application in a realistic
urban SaR scenario.Comment: Paper accepted for International Conference on Robotics and
Automation (ICRA-2019) to be held at Montreal, Canad
- …