1,510 research outputs found

    Mechanical Properties of Interlocking Assemblies on a Rhombille Tiling

    Get PDF
    The use of glue-less assembly methods has permitted the construction of rigid structures for centuries. Japanese interlocking wood joints and stereotomic structures by repetitious stacking of unit blocks are classical examples. The implementation of interlocking structures occurs when materials such as mortar and nails are unavailable or undesired. There has been a recent revival of interest in these construction methods as modern manufacturing tools enable new form and function. As humanity continues to innovate, materials possessing mechanical properties such as heightened flexibility without compromising strength or increased resistance to fracture will be needed. As one such example, this work examines interlocking assemblies emerging from a rhombille tiling. Rhombille tilings are formed by using three rhombuses to create a regular hexagon, then tessellating those hexagons. The resulting assembly is one of disphenoids and has either triangular or hexagonal symmetry. The elements are arranged such that the assembly forms a hexagonal plate with two thirds the density of a solid plate of equal thickness. Rotation free and restricted states are realized. The mechanical properties of this interlocked assembly are examined in finite element analysis and experiments performed on physical models realized by 3D printing. Initial results suggest a chiral response to loading paths in the hexagonally symmetric arrangement. Triangularly symmetric arrangements suggest load paths based on concentric or patterned hexagons. These load patterns are distinctly different from those in comparable solid plates. All assemblies have shown fracture resistance where damage is localized to few elements, leaving the remainder of the plate intact

    Report of the ultraviolet and visible sensors panel

    Get PDF
    In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies

    Estimating the Yield Strength of Thin Metal Films through Elastic-Plastic Buckling-Induced Debonding

    Get PDF
    In this paper, we propose a procedure to estimate the yield strength of thin films by debonding films from their substrate by elastic-plastic buckling under thermally-induced compressive loading. The out-of-plane displacement of the metal lines under conditions of elastic-plastic buckling is dependent on the yield strength of the film. Thus, an inverse estimate of the yield strength is made from measurements of the out-of-plane displacements of the buckled metal lines. The procedure is demonstrated to estimate the yield strength of aluminum lines consistent with measurements by other techniques

    An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials

    Get PDF
    Particulate composites are commonly used in Microelectronics applications. One example of such materials is Thermal Interface Materials (TIMs) that are used to reduce the contact resistance between the chip and the heat sink. The existing analytical descriptions of thermal transport in particulate systems do not accurately account for the effect of inter-particle interactions, especially in the intermediate volume fractions of 30-80%. Another crucial drawback in the existing analytical as well as the network models is the inability to model size distributions (typically bimodal) of the filler material particles that are obtained as a result of the material manufacturing process. While full-field simulations (using, for instance, the finite element method) are possible for such systems, they are computationally expensive. In the present paper, we develop an efficient network model that captures the physics of inter-particle interactions and allows for random size distributions. Twenty random microstructural arrangements each of Alumina as well as Silver particles in Silicone and Epoxy matrices were generated using an algorithm implemented using a java language code. The microstructures were evaluated through both full-field simulations as well as the network model. The full-field simulations were carried out using a novel meshless analysis technique developed in the author’s (GS) research [26]. In all cases, it is shown that the random network models are accurate to within 5% of the full field simulations. The random network model simulations were efficient since they required two orders of magnitude smaller computation time to complete in comparison to the full field simulation

    Optimal sequential fingerprinting: Wald vs. Tardos

    Full text link
    We study sequential collusion-resistant fingerprinting, where the fingerprinting code is generated in advance but accusations may be made between rounds, and show that in this setting both the dynamic Tardos scheme and schemes building upon Wald's sequential probability ratio test (SPRT) are asymptotically optimal. We further compare these two approaches to sequential fingerprinting, highlighting differences between the two schemes. Based on these differences, we argue that Wald's scheme should in general be preferred over the dynamic Tardos scheme, even though both schemes have their merits. As a side result, we derive an optimal sequential group testing method for the classical model, which can easily be generalized to different group testing models.Comment: 12 pages, 10 figure

    Noiseless, kilohertz-frame-rate, imaging detector based on micro-channel plates readout with the Medipix2 CMOS pixel chip

    Get PDF
    A new hybrid imaging detector is described that is being developed for the next generation adaptive optics (AO) wavefront sensors. The detector consists of proximity focused microchannel plates (MCPs) read out by pixelated CMOS application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2"). Each Medipix2 pixel has an amplifier, lower and upper charge discriminators, and a 14-bit chounter. The 256x256 array can be read out noiselessly (photon counting) in 286 us. The Medipix2 is buttable on 3 sides to produce 512x(n*256) pixel devices. The readout can be electronically shuttered down to a terporal window of a few microseconds with an accuracy of 10 ns. Good quantum efficiencies can be achieved from the x-ray (open faced with opaque photocathodes) to the optical (sealed tube with multialkali or GaAs photocathode)

    Photon counting arrays for AO wavefront sensors

    Get PDF
    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at fluences of 60 photons or less, though the specific number is dependent on seeing conditions and the centroid algorithm used. We then present the status of a 256x256 noiseless MCP/Medipix2 hybrid detector being developed for AO
    • …
    corecore