4,860 research outputs found
Coarsening Dynamics of Crystalline Thin Films
The formation of pyramid-like structures in thin-film growth on substrates
with a quadratic symmetry, e.g., {001} surfaces, is shown to exhibit
anisotropic scaling as there exist two length scales with different time
dependences. Analytical and numerical results indicate that for most
realizations coarsening of mounds is described by an exponent n=0.2357.
However, depending on material parameters, n may lie between 0 (logarithmic
coarsening) and 1/3. In contrast, growth on substrates with triangular
symmetries ({111} surfaces) is dominated by a single length scale and an
exponent n=1/3.Comment: RevTeX, 4 pages, 3 figure
Comparing numerical ice-sheet model output with radio-echo sounding measurements in the Weddell Sea sector of West Antarctica
Numerical ice-sheet models are commonly matched to surface ice velocities from InSAR measurements by modifying basal drag, allowing the flow and form of the ice sheet to be simulated. Geophysical measurements of the bed are rarely used to examine if this modification is realistic, however. Here, we examine radio-echo sounding (RES) data from the Weddell Sea (WS) sector of West Antarctica to investigate how output from a well-established ice-sheet model compares with measurements of the basal environment. We know the WS sector contains the Institute, Möller and Foundation ice streams, each with distinct basal characteristics: Institute Ice Stream lies partly over wet unconsolidated sediments, where basal drag is very low; Möller Ice Stream lies on relatively rough bed, where basal drag is likely larger; and Foundation Ice Stream is controlled by a deep subglacial trough with flow-aligned bedrock landforms and smooth unconsolidated sediments. In general, the ice-sheet model represents each ice-stream system well. We also find that ice velocities do not match perfectly in some locations, and that adjustment of the boundaries of low basal drag, to reflect RES evidence, should improve model performance. Our work showcases the usefulness of RES in calibrating ice-sheet model results with observations of the bed
Constraints on positron annihilation kinematics in the inner Galaxy
Context. The annihilation of cosmic positrons with electrons in the interstellar medium results in the strongest persistent γ-ray line signal in the sky. For the past 50 yr, this 511 keV emission - predominantly from the galactic bulge region and from a low surface-brightness disk - has puzzled observers and theoreticians. A key issue for understanding positron astrophysics is found in cosmic-ray propagation, especially at low kinetic energies (≲ 10 MeV). Aims. We want to shed light on how positrons propagate and the resulting morphology of the annihilation emission. We approach this "positron puzzle" by inferring kinematic information of the 511 keV line in the inner radian of the Galaxy. This constrains propagation scenarios and positron source populations in the Milky Way. Methods. By dissecting the positron annihilation emission as measured with INTEGRAL/SPI, we derived spectra for individual and independent regions in the sky. The centroid energies of these spectra around the 511 keV line are converted into Doppler shifts, representing the line-of-sight velocity along different galactic longitudes. This results in a longitude-velocity diagram of positron annihilation. From high-resolution spectra, we also determined Doppler-broadening from γ-ray line shape parameters to study annihilation conditions as they vary with galactic longitude. Results. We found line-of-sight velocities in the 511 keV line that are consistent with zero, as well as with galactic rotation from CO measurements (2-3 km s -1 deg -1), and measurements of radioactive 26Al (7.5-9.5 km s -1 deg -1). The velocity gradient in the inner ±30° is determined to be 4 ± 6 km s -1 deg -1. The width of the 511 keV line is constant as a function of longitude at 2.43 ± 0.14 keV, with possibly different values towards the disk. The positronium fraction is found to be 1.0 along the galactic plane. Conclusions. The weak signals in the disk leave the question open of whether positron annihilation is associated with the high velocities seen in 26Al or rather with ordinarily rotating components of the Milky Way's interstellar medium. We confirm previous results that positrons are slowed down to the 10 eV energy scale before annihilation and constrain bulk Doppler-broadening contributions to ≲ 1.25 keV in the inner radian. Consequently, the true annihilation conditions remain unclear.Peer reviewedFinal Accepted Versio
Light Spectrum and Decay Constants in Full QCD with Wilson Fermions
We present results from an analysis of the light spectrum and the decay
constants f_{\pi} and f_V^{-1} in Full QCD with n_f=2 Wilson fermions at a
coupling of beta=5.6 on a 16^3x32 lattice.Comment: 3 pages, LaTeX with 4 eps figures, Talk presented at
LATTICE96(spectrum
Comparing simulated Al maps to gamma-ray measurements
© ESO 2019.Context. The diffuse gamma-ray emission of at 1.8 MeV reflects ongoing nucleosynthesis in the Milky Way, and traces massive-star feedback in the interstellar medium due to its 1 Myr radioactive lifetime. Interstellar-medium morphology and dynamics are investigated in astrophysics through 3D hydrodynamic simulations in fine detail, as only few suitable astronomical probes are available. Aims. We compare a galactic-scale hydrodynamic simulation of the Galaxy's interstellar medium, including feedback and nucleosynthesis, with gamma-ray data on emission in the Milky Way extracting constraints that are only weakly dependent on the particular realisation of the simulation or Galaxy structure. Methods. Due to constraints and biases in both the simulations and the gamma-ray observations, such comparisons are not straightforward. For a direct comparison, we perform maximum likelihood fits of simulated sky maps as well as observation-based maximum entropy maps to measurements with INTEGRAL/SPI. To study general morphological properties, we compare the scale heights of emission produced by the simulation to INTEGRAL/SPI measurements.} Results. The direct comparison shows that the simulation describes the observed inner Galaxy well, but differs significantly from the observed full-sky emission morphology. Comparing the scale height distribution, we see similarities for small scale height features and a mismatch at larger scale heights. We attribute this to the prominent foreground emission sites that are not captured by the simulation.Peer reviewedFinal Accepted Versio
Stochastic method for in-situ damage analysis
Based on the physics of stochastic processes we present a new approach for
structural health monitoring. We show that the new method allows for an in-situ
analysis of the elastic features of a mechanical structure even for realistic
excitations with correlated noise as it appears in real-world situations. In
particular an experimental set-up of undamaged and damaged beam structures was
exposed to a noisy excitation under turbulent wind conditions. The method of
reconstructing stochastic equations from measured data has been extended to
realistic noisy excitations like those given here. In our analysis the
deterministic part is separated from the stochastic dynamics of the system and
we show that the slope of the deterministic part, which is linked to mechanical
features of the material, changes sensitively with increasing damage. The
results are more significant than corresponding changes in eigenfrequencies, as
commonly used for structural health monitoring.Comment: This paper is accepted by European Physical Journal B on November 2.
2012. 5 pages, 5 figures, 1 tabl
The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice
Background There is a large body of experimental evidence suggesting that
omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are capable of modulating
immune function. Some studies have shown that these PUFAs might have a
beneficial effect in patients suffering form multiple sclerosis (MS), a
chronic inflammatory demyelinating disease of the central nervous system
(CNS). This could be due to increased n-3 PUFA-derived anti-inflammatory lipid
mediators. In the present study we tested the effect of an endogenously
increased n-3 PUFA status on cuprizone-induced CNS demyelination and
remyelination in fat-1 mice versus their wild-type (wt) littermates. Fat-1
mice express an n-3 desaturase, which allows them to convert n-6 PUFAs into
n-3 PUFAs. Results CNS lipid profiles in fat-1 mice showed a significant
increase of eicosapentaenoic acid (EPA) levels but similar docosahexaenoic
acid levels compared to wt littermates. This was also reflected in
significantly higher levels of monohydroxy EPA metabolites such as
18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 brain tissue. Feeding fat-1
mice and wt littermates 0.2% cuprizone for 5 weeks caused a similar degree of
CNS demyelination in both groups; remyelination was increased in the fat-1
group after a recovery period of 2 weeks. However, at p = 0.07 this difference
missed statistical significance. Conclusions These results indicate that n-3
PUFAs might have a role in promotion of remyelination after toxic injury to
CNS oligodendrocytes. This might occur either via modulation of the immune
system or via a direct effect on oligodendrocytes or neurons through EPA-
derived lipid metabolites such as 18-HEPE
Local gauge invariance implies Siegert's hypothesis
The nonrelativistic Ward-Takahashi identity, a consequence of local gauge
invariance in quantum mechanics, shows the necessity of exchange current
contributions in case of nonlocal and/or isospin-dependent potentials. It also
implies Siegert's hypothesis: in the nonrelativistic limit, two-body charge
densities identically vanish. Neither current conservation, which follows from
global gauge invariance, nor the constraints of (lowest order) relativity are
sufficient to arrive at this result. Furthermore, a low-energy theorem for
exchange contributions is established.Comment: 5 pages, REVTE
Hydrological restoration of Indonesian peatlands to mitigate carbon dioxide emissions
Delta Session DS 9: The lowland deltas of Indonesia. Hydrological restoration of Indonesian peatlands to mitigate carbon dioxide emissions, Henk Wösten (2010). Presented at the international conference Deltas in Times of Climate Change, 29 September - 1 October, Rotterdam, the Netherlands
Tropical peatlands: carbon stores, carbon gas emissions and contribution to climate change processes
- …