407 research outputs found

    Assessment of a plasma amyloid probability score to estimate amyloid positron emission tomography findings among adults with cognitive impairment

    Get PDF
    Importance: The diagnostic evaluation for Alzheimer disease may be improved by a blood-based diagnostic test identifying presence of brain amyloid plaque pathology. Objective: To determine the clinical performance associated with a diagnostic algorithm incorporating plasma amyloid-β (Aβ) 42:40 ratio, patient age, and apoE proteotype to identify brain amyloid status. Design, Setting, and Participants: This cohort study includes analysis from 2 independent cross-sectional cohort studies: the discovery cohort of the Plasma Test for Amyloidosis Risk Screening (PARIS) study, a prospective add-on to the Imaging Dementia-Evidence for Amyloid Scanning study, including 249 patients from 2018 to 2019, and MissionAD, a dataset of 437 biobanked patient samples obtained at screenings during 2016 to 2019. Data were analyzed from May to November 2020. Exposures: Amyloid detected in blood and by positron emission tomography (PET) imaging. Main Outcomes and Measures: The main outcome was the diagnostic performance of plasma Aβ42:40 ratio, together with apoE proteotype and age, for identifying amyloid PET status, assessed by accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results: All 686 participants (mean [SD] age 73.2 [6.3] years; 368 [53.6%] men; 378 participants [55.1%] with amyloid PET findings) had symptoms of mild cognitive impairment or mild dementia. The AUC of plasma Aβ42:40 ratio for PARIS was 0.79 (95% CI, 0.73-0.85) and 0.86 (95% CI, 0.82-0.89) for MissionAD. Ratio cutoffs for Aβ42:40 based on the Youden index were similar between cohorts (PARIS: 0.089; MissionAD: 0.092). A logistic regression model (LRM) incorporating Aβ42:40 ratio, apoE proteotype, and age improved diagnostic performance within each cohort (PARIS: AUC, 0.86 [95% CI, 0.81-0.91]; MissionAD: AUC, 0.89 [95% CI, 0.86-0.92]), and overall accuracy was 78% (95% CI, 72%-83%) for PARIS and 83% (95% CI, 79%-86%) for MissionAD. The model developed on the prospectively collected samples from PARIS performed well on the MissionAD samples (AUC, 0.88 [95% CI, 0.84-0.91]; accuracy, 78% [95% CI, 74%-82%]). Training the LRM on combined cohorts yielded an AUC of 0.88 (95% CI, 0.85-0.91) and accuracy of 81% (95% CI, 78%-84%). The output of this LRM is the Amyloid Probability Score (APS). For clinical use, 2 APS cutoff values were established yielding 3 categories, with low, intermediate, and high likelihood of brain amyloid plaque pathology. Conclusions and Relevance: These findings suggest that this blood biomarker test could allow for distinguishing individuals with brain amyloid-positive PET findings from individuals with amyloid-negative PET findings and serve as an aid for Alzheimer disease diagnosis

    Need for objective task-based evaluation of AI-based segmentation methods for quantitative PET

    Full text link
    Artificial intelligence (AI)-based methods are showing substantial promise in segmenting oncologic positron emission tomography (PET) images. For clinical translation of these methods, assessing their performance on clinically relevant tasks is important. However, these methods are typically evaluated using metrics that may not correlate with the task performance. One such widely used metric is the Dice score, a figure of merit that measures the spatial overlap between the estimated segmentation and a reference standard (e.g., manual segmentation). In this work, we investigated whether evaluating AI-based segmentation methods using Dice scores yields a similar interpretation as evaluation on the clinical tasks of quantifying metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of primary tumor from PET images of patients with non-small cell lung cancer. The investigation was conducted via a retrospective analysis with the ECOG-ACRIN 6668/RTOG 0235 multi-center clinical trial data. Specifically, we evaluated different structures of a commonly used AI-based segmentation method using both Dice scores and the accuracy in quantifying MTV/TLG. Our results show that evaluation using Dice scores can lead to findings that are inconsistent with evaluation using the task-based figure of merit. Thus, our study motivates the need for objective task-based evaluation of AI-based segmentation methods for quantitative PET

    First-in-man evaluation of 124I-PGN650: A PET tracer for detecting phosphatidylserine as a biomarker of the solid tumor microenvironment

    Get PDF
    Purpose: PGN650 is a F(ab′) 2 antibody fragment that targets phosphatidylserine (PS), a marker normally absent that becomes exposed on tumor cells and tumor vasculature in response to oxidative stress and increases in response to therapy. PGN650 was labeled with 124 I to create a positron emission tomography (PET) agent as an in vivo biomarker for tumor microenvironment and response to therapy. In this phase 0 study, we evaluated the pharmacokinetics, safety, radiation dosimetry, and tumor targeting of this tracer in a cohort of patients with cancer. Methods: Eleven patients with known solid tumors received approximately 140 MBq (3.8 mCi) 124 I-PGN650 intravenously and underwent positron emission tomography–computed tomography (PET/CT) approximately 1 hour, 3 hours, and either 24 hours or 48 hours later to establish tracer kinetics for the purpose of calculating radiation dosimetry (from integration of the organ time-activity curves and OLINDA/EXM using the adult male and female models). Results: Known tumor foci demonstrated mildly increased uptake, with the highest activity at the latest imaging time. There were no unexpected adverse events. The liver was the organ receiving the highest radiation dose (0.77 mGy/MBq); the effective dose was 0.41 mSv/MBq. Conclusion: Although 124 I-PGN650 is safe for human PET imaging, the tumor targeting with this agent in patients was less than previously observed in animal studies

    A prospective trial comparing FDG-PET/CT and CT to assess tumor response to cetuximab in patients with incurable squamous cell carcinoma of the head and neck

    Get PDF
    Computed tomography (CT), the standard method to assess tumor response to cetuximab in incurable squamous cell carcinoma of the head and neck (SCCHN), performs poorly as judged by the disparity between high disease control rate (46%) and short time to progression (TTP) (70 days). F-18 fluorodeoxyglucose positron emission tomography (FDG-PET)/CT is an alternative method to assess tumor response. The primary objective of this prospective trial was to evaluate the metabolic response of target lesions, assessed as the change in maximum standardized uptake value (SUV(max)) on FDG-PET/CT before and after 8 weeks (cycle 1) of cetuximab. Secondary objectives were to compare tumor response by CT (RECIST 1.0) and FDG-PET/CT (EORTC criteria) following cycle 1, and determine TTP with continued cetuximab administration in patients with disease control by CT after cycle 1 but stratified for disease control or progression by FDG-PET/CT. Among 27 patients, the mean percent change of SUV(max) of target lesions after cycle 1 was −21% (range: +72% to −81%); by FDG-PET/CT, partial response (PR)/stable disease (SD) occurred in 15 patients (56%) and progression in 12 (44%), whereas by CT, PR/SD occurred in 20 (74%) and progression in 7 (26%). FDG-PET/CT and CT assessments were discordant in 14 patients (P = 0.0029) and had low agreement (κ = 0.30; 95% confidence interval [CI]: 0.12, 0.48). With disease control by CT after cycle 1, median TTP was 166 days (CI: 86, 217) if the FDG-PET/CT showed disease control and 105 days (CI: 66, 159) if the FDG-PET/CT showed progression (P < 0.0001). Median TTP of the seven patients whose post cycle 1 CT showed progression compared to the 12 whose FDG-PET/CT showed progression were similar (53 [CI: 49, 56] vs. 61 [CI: 50, 105] days, respectively). FDG-PET/CT may be better than CT in assessing benefit of cetuximab in incurable SCCHN

    Radioactive Iodine Therapy Decreases Recurrence in Thyroid Papillary Microcarcinoma

    Get PDF
    Background. The most appropriate therapy for papillary microcarcinoma (PMC) is controversial. Methods. We reviewed the therapy and outcome of 407 patients with PMC. Results. Three hundred-eighty patients underwent total thyroidectomy, and 349 patients received I-131 therapy. The median followup was 5.3 years. Forty patients developed recurrent disease. On univariate analysis, development of disease recurrence was correlated with histological tumor size > 0.8 cm (P = 0.0104), age < 45 years (P = 0.043), and no I-131 therapy (P < 0.0001). On multivariate analysis, histological tumor size > 0.8 cm, positive lymph nodes, and no I-131 therapy were significant. The 5-year RFS for patients treated with I-131 was 95.0% versus 78.6% (P < 0.0001) for patients not treated with I-131. Patients with lymph node metastasis who did not receive I-131 had a 5-year RFS of 42.9% versus 93.2% (P < 0.0001) for patients who received I-131. Conclusions. Recommend I-131 remnant ablation for patients with PMC, particularly patients with lymph node metastasis

    Association of PET-based estradiol-challenge test for breast cancer progesterone receptors with response to endocrine therapy

    Get PDF
    Clinical estrogen receptor (ER) testing for breast cancer is limited in predicting response to endocrine therapy (ET). In this phase 2 clinical trial, authors demonstrate that the responsiveness to ET can be predicted by use of PET/CT with 21-[18F]fluorofuranylnorprogesterone (FFNP) to detect the change in tumor progesterone receptor (PgR) levels after a one-day estradiol challenge
    corecore