7 research outputs found

    Neurolymphomatosis: An International Primary CNS Lymphoma Collaborative Group report

    No full text
    Neurolymphomatosis (NL) is a rare clinical entity. The International Primary CNS Lymphoma Collaborative Group retrospectively analyzed 50 patients assembled from 12 centers in 5 countries over a 16-year period. NL was related to non-Hodgkin lymphoma in 90% and to acute leukemia in 10%. It occurred as the initial manifestation of malignancy in 26% of cases. The affected neural structures included peripheral nerves (60%), spinal nerve roots (48%), cranial nerves (46%), and plexus (40%) with multiple site involvement in 58%. Imaging studies often suggested the diagnosis with 77% positive magnetic resonance imaging, and 84% (16 of 19) positive computed tomography-positron emission tomography studies. Cerebrospinal fluid cytology was positive in 40%, and nerve biopsy confirmed the diagnosis in 23 of 26 (88%). Treatment in 47 patients included systemic chemotherapy (70%), intra-cerebrospinal fluid chemotherapy (49%), and radiotherapy (34%). Response to treatment was observed in 46%. The median overall survival was 10 months, with 12- and 36-month survival proportions of 46% and 24%, respectively. NL is a challenging diagnosis, but contemporary imaging techniques frequently detect the relevant neural invasion. An aggressive multimodality therapy can prevent neurologic deterioration and is associated with a prolonged survival in a subset of patients

    Brain parenchyma involvement as isolated central nervous system relapse of systemic non-Hodgkin lymphoma: An International Primary CNS Lymphoma Collaborative Group report

    No full text
    Isolated central nervous system (CNS) relapse involving the brain parenchyma is a rare complication of systemic non-Hodgkin lymphoma. We retrospectively analyzed patient characteristics, management, and outcomes of this complication. After complete response to initial non-Hodgkin lymphoma treatment, patients with isolated CNS relapse with the brain parenchyma as initial relapse

    Characterization of infectivity of knob-modified adenoviral vectors in glioma

    No full text
    Malignant glioma continues to be a major target for gene therapy and virotherapy due to its aggressive growth and the current lack of effective treatment. However, these approaches have been hampered by inefficient infection of glioma cells by viral vectors, particularly vectors derived from serotype 5 adenoviruses (Ad5). This results from limited cell surface expression of the primary adenovirus receptor, coxsackie-adenovirus-receptor (CAR), on tumor cells. To circumvent this problem, Ad fiber pseudotyping, the genetic replacement of either the entire fiber or fiber knob domain with its structural counterpart from another human Ad serotype that recognizes a cellular receptor other than CAR, has been shown to enhance Ad infectivity in a variety of tumor types, including human glioma. Here, we have extended the paradigm of genetic pseudotyping to include fiber domains from non-human or "xenotype" Ads for infectivity enhancement of human glioma cell populations. In this study, we evaluated the gene transfer efficiency of a panel of Ad vectors which express one of five different "xenotype" fiber knob domains, including those derived from murine, ovine, porcine and canine species, in both human glioma cell lines as well as primary glioma tumor cells from patients. Adenovirus vectors displaying either canine Ad or porcine Ad fiber elements had the highest gene transfer to both glioma cell lines and primary tumor cells. The correlation between the viral infectivity of modified adenovirus vectors and expression of human CAR and CD46 (an adenovirus type B receptor) on the surfaces of tumor cells was also analyzed. Taken together, human adenovirus vectors modified with "xenotype" fiber elements could be excellent candidates to target human glioma
    corecore