9 research outputs found
Cloning, expression and characterization of l-asparaginase from Withania somnifera L. for large scale production
l-Asparaginase (E.C. 3.5.1.1) is used as a therapeutic agent in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. In plants, l-asparaginase enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. An Indian medicinal plant, Withania somnifera was reported as a novel source of l-asparaginase. l-Asparaginase from W. somnifera was cloned and overexpressed in E. coli. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (Km, kcat) for a number of substrates were determined. The kinetic parameters of selected substrates were determined at various pH and the pH- and temperature-dependence profiles were analyzed. WA gene successfully cloned into E. coli BL21 (DE3) showed high asparaginase activity with a specific activity of 17.3 IU/mg protein
Comparative Functional Genomics of Salt Stress in Related Model and Cultivated Plants Identifies and Overcomes Limitations to Translational Genomics
One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl− correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, ‘triangulation’ from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species
Nitrogen assimilation in Citrus based on CitEST data mining
Assimilation of nitrate and ammonium are vital procedures for plant development and growth. From these primary paths of inorganic nitrogen assimilation, this metabolism integrates diverse paths for biosynthesis of macromolecules, such as amino acids and nucleotides, and the central intermediate metabolism, like carbon metabolism and photorespiration. This paper reports research performed in the CitEST (Citrus Expressed Sequence Tag) database for the main genes involved in nitrogen metabolism and those previously described in other organisms. The results show that a complete cluster of genes involved in the assimilation of nitrogen and the metabolisms of glutamine, glutamate, aspartate and asparagine can be found in the CitEST data. The main enzymes found were nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT), glutamate dehydrogenase (GDH), aspartate aminotransferase (AspAT) and asparagine synthetase (AS). The different enzymes involved in this metabolism have been shown to be highly conserved among the Citrus and Poncirus species. This work serves as a guide for future functional analysis of these enzymes in citrus