13 research outputs found

    Human T-Cell Leukemia Virus Type 1 (HTLV-1) and HTLV-2 Tax Oncoproteins Modulate Cell Cycle Progression and Apoptosis

    No full text
    Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia and lymphoma, an aggressive clonal malignancy of human CD4-bearing T lymphocytes. HTLV-2, although highly related to HTLV-1 at the molecular level, has not been conclusively linked to development of lymphoproliferative disorders. Differences between the biological activities of the respective tax gene products (Tax1 and Tax2) may be one factor which accounts for the differential pathogenicities associated with infection. To develop an in vitro model to investigate and compare the effects of constitutive expression of Tax1 and Tax2, Jurkat T-cell lines were infected with lentivirus vectors encoding Tax1 and Tax2 in conjunction with green fluorescent protein, and stably transduced clonal cell lines were generated by serial dilution in the absence of drug selection. Jurkat cells that constitutively express Tax1 and Tax2 (Tax1/Jurkat and Tax2/Jurkat, respectively) showed notably reduced kinetics of cellular replication, and Tax1 inhibited cellular replication to a higher degree in comparison to Tax2. Tax1 markedly activated transcription from the cdk inhibitor p21(cip1/waf1) promoter in comparison to Tax2, suggesting that upregulation of p21(cip1/waf1) may account for the differential inhibition of cellular replication kinetics displayed by Tax1/Jurkat and Tax2/Jurkat cells. The presence of binucleated and multinucleated cells, reminiscent of large lymphocytes with cleaved or cerebriform nuclei often seen in HTLV-1- and -2-seropositive patients, was noted in cultures expressing Tax1 and Tax2. Although Tax1 and Tax2 expression mediated elevated resistance to apoptosis in Jurkat cells after serum deprivation, Tax1 was unique in protection from apoptosis after exposure to camptothecin and etoposide, inhibitors of topoisomerase I and II, respectively. Characterization of the unique phenotypes displayed by Tax1 and Tax2 in vitro will provide information as to the relative roles of these oncoproteins and their contribution to HTLV-1 and -2 pathogenesis in vivo

    Induction of Cell Cycle Arrest by Human T-Cell Lymphotropic Virus Type 1 Tax in Hematopoietic Progenitor (CD34(+)) Cells: Modulation of p21(cip1/waf1) and p27(kip1) Expression

    No full text
    Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, an aggressive CD4(+) malignancy. Although HTLV-2 is highly homologous to HTLV-1, infection with HTLV-2 has not been associated with lymphoproliferative disorders. Lentivirus-mediated transduction of CD34(+) cells with HTLV-1 Tax (Tax1) induced G(0)/G(1) cell cycle arrest and resulted in the concomitant suppression of multilineage hematopoiesis in vitro. Tax1 induced transcriptional upregulation of the cdk inhibitors p21(cip1/waf1) (p21) and p27(kip1) (p27), and marked suppression of hematopoiesis in immature (CD34(+)/CD38(−)) hematopoietic progenitor cells in comparison to CD34(+)/CD38(+) cells. HTLV-1 infection of CD34(+) cells also induced p21 and p27 expression. Tax1 also protected CD34(+) cells from serum withdrawal-mediated apoptosis. In contrast, HTLV-2 Tax (Tax2) did not detectably alter p21 or p27 gene expression, failed to induce cell cycle arrest, failed to suppress hematopoiesis in CD34(+) cells, and did not protect cells from programmed cell death. A Tax2/Tax1 chimera encoding the C-terminal 53 amino acids of Tax1 fused to Tax2 (Tax(221)) displayed a phenotype in CD34(+) cells similar to that of Tax1, suggesting that unique domains encoded within the C terminus of Tax1 may account for the phenotypes displayed in human hematopoietic progenitor cells. These remarkable differences in the activities of Tax1 and Tax2 in CD34(+) hematopoietic progenitor cells may underlie the sharp differences observed in the pathogenesis resulting from infection with HTLV-1 and HTLV-2

    Human T-Cell Leukemia Virus Type 1 Tax Oncoprotein Suppression of Multilineage Hematopoiesis of CD34(+) Cells In Vitro

    No full text
    Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are highly related viruses that differ in disease manifestation. HTLV-1 is the etiologic agent of adult T-cell leukemia and lymphoma, an aggressive clonal malignancy of human CD4-bearing T lymphocytes. Infection with HTLV-2 has not been conclusively linked to lymphoproliferative disorders. We previously showed that human hematopoietic progenitor (CD34(+)) cells can be infected by HTLV-1 and that proviral sequences were maintained after differentiation of infected CD34(+) cells in vitro and in vivo. To investigate the role of the Tax oncoprotein of HTLV on hematopoiesis, bicistronic lentiviral vectors were constructed encoding the HTLV-1 or HTLV-2 tax genes (Tax1 and Tax2, respectively) and the green fluorescent protein marker gene. Human hematopoietic progenitor (CD34(+)) cells were infected with lentivirus vectors, and transduced cells were cultured in a semisolid medium permissive for the development of erythroid, myeloid, and primitive progenitor colonies. Tax1-transduced CD34(+) cells displayed a two- to fivefold reduction in the total number of hematopoietic clonogenic colonies that arose in vitro, in contrast to Tax2-transduced cells, which showed no perturbation of hematopoiesis. The ratio of colony types that developed from Tax1-transduced CD34(+) cells remained unaffected, suggesting that Tax1 inhibited the maturation of relatively early, uncommitted hematopoietic stem cells. Since previous reports have linked Tax1 expression with initiation of apoptosis, lentiviral vector-mediated transduction of Tax1 or Tax2 was investigated in CEM and Jurkat T-cell lines. Ectopic expression of either Tax1 or Tax2 failed to induce apoptosis in T-cell lines. These data demonstrate that Tax1 expression perturbs development and maturation of pluripotent hematopoietic progenitor cells, an activity that is not displayed by Tax2, and that the suppression of hematopoiesis is not attributable to induction of apoptosis. Since hematopoietic progenitor cells may serve as a latently infected reservoir for HTLV infection in vivo, the different abilities of HTLV-1 and -2 Tax to suppress hematopoiesis may play a role in the respective clinical outcomes after infection with HTLV-1 or -2

    Proinflammatory Cytokine Gene Induction by Human T-Cell Leukemia Virus Type 1 (HTLV-1) and HTLV-2 Tax in Primary Human Glial Cells

    No full text
    Infection with human T-cell leukemia virus type 1 (HTLV-1) can result in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic inflammatory disease of the central nervous system (CNS). HTLV-2 is highly related to HTLV-1 at the genetic level and shares a high degree of sequence homology, but infection with HTLV-2 is relatively nonpathogenic compared to HTLV-1. Although the pathogenesis of HAM/TSP remains to be fully elucidated, previous evidence suggests that elevated levels of the proinflammatory cytokines in the CNS are associated with neuropathogenesis. We demonstrate that HTLV-1 infection in astrogliomas results in a robust induction of interleukin-1β (IL-1β), IL-1α, tumor necrosis factor alpha (TNF-α), TNF-β, and IL-6 expression. HTLV encodes for a viral transcriptional transactivator protein named Tax that also induces the transcription of cellular genes. To investigate and compare the effects of Tax1 and Tax2 expression on the dysregulation of proinflammatory cytokines, lentivirus vectors were used to transduce primary human astrocytomas and oligodendrogliomas. The expression of Tax1 in primary human astrocytomas and oligodendrogliomas resulted in significantly higher levels of proinflammatory cytokine gene expression compared to Tax2. Notably, Tax1 expression uniquely sensitized primary human astrocytomas to apoptosis. A Tax2/Tax1 chimera encoding the C-terminal 53 amino acids of the Tax1 fused to the Tax2 gene (Tax(221)) demonstrated a phenotype that resembled Tax1, with respect to proinflammatory cytokine gene expression and sensitization to apoptosis. The patterns of differential cytokine induction and sensitization to apoptosis displayed by Tax1 and Tax2 may reflect differences relating to the heightened neuropathogenicity associated with HTLV-1 infection and the development of HAM/TSP

    KSHV/HHV-8 infection of human hematopoietic progenitor (CD34+) cells: persistence of infection during hematopoiesis in vitro and in vivo

    No full text
    The cellular reservoir for Kaposi sarcoma-associated herpesvirus (KSHV) infection in the hematopoietic compartment and mechanisms governing latent infection and reactivation remain undefined. To determine susceptibility of human CD34+ hematopoietic progenitor cells (HPCs) to infection with KSHV, purified HPCs were exposed to KSHV, and cells were differentiated in vitro and in vivo. Clonogenic colony-forming activity was significantly suppressed in KSHV-infected CD34+ cells, and viral DNA was predominantly localized to granulocyte-macrophage colonies differentiated in vitro. rKSHV.219 is a recombinant KSHV construct that expresses green fluorescent protein from a cellular promoter active during latency and red fluorescent protein from a viral lytic promoter. Infection of CD34+ HPCs with rKSHV.219 showed similar patterns of infection, persistence, and hematopoietic suppression in vitro in comparison with KSHV. rKSHV.219 infection was detected in human CD14+ and CD19+ cells recovered from NOD/SCID mouse bone marrow and spleen following reconstitution with rKSHV.219-infected CD34+ HPCs. These results suggest that rKSHV.219 establishes persistent infection in NOD/SCID mice and that virus may be disseminated following differentiation of infected HPCs into the B-cell and monocyte lineages. CD34+ HPCs may be a reservoir for KSHV infection and may provide a continuous source of virally infected cells in vivo. (Blood. 2006;108:141-151
    corecore