80 research outputs found
Distributed Dominating Set Approximations beyond Planar Graphs
The Minimum Dominating Set (MDS) problem is one of the most fundamental and
challenging problems in distributed computing. While it is well-known that
minimum dominating sets cannot be approximated locally on general graphs, over
the last years, there has been much progress on computing local approximations
on sparse graphs, and in particular planar graphs.
In this paper we study distributed and deterministic MDS approximation
algorithms for graph classes beyond planar graphs. In particular, we show that
existing approximation bounds for planar graphs can be lifted to bounded genus
graphs, and present (1) a local constant-time, constant-factor MDS
approximation algorithm and (2) a local -time
approximation scheme. Our main technical contribution is a new analysis of a
slightly modified variant of an existing algorithm by Lenzen et al.
Interestingly, unlike existing proofs for planar graphs, our analysis does not
rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299
- …