2,896 research outputs found

    Semiclassical universality of parametric spectral correlations

    Full text link
    We consider quantum systems with a chaotic classical limit that depend on an external parameter, and study correlations between the spectra at different parameter values. In particular, we consider the parametric spectral form factor K(τ,x)K(\tau,x) which depends on a scaled parameter difference xx. For parameter variations that do not change the symmetry of the system we show by using semiclassical periodic orbit expansions that the small τ\tau expansion of the form factor agrees with Random Matrix Theory for systems with and without time reversal symmetry.Comment: 18 pages, no figure

    Partner orbits and action differences on compact factors of the hyperbolic plane. Part I: Sieber-Richter pairs

    Full text link
    Physicists have argued that periodic orbit bunching leads to universal spectral fluctuations for chaotic quantum systems. To establish a more detailed mathematical understanding of this fact, it is first necessary to look more closely at the classical side of the problem and determine orbit pairs consisting of orbits which have similar actions. In this paper we specialize to the geodesic flow on compact factors of the hyperbolic plane as a classical chaotic system. We prove the existence of a periodic partner orbit for a given periodic orbit which has a small-angle self-crossing in configuration space which is a `2-encounter'; such configurations are called `Sieber-Richter pairs' in the physics literature. Furthermore, we derive an estimate for the action difference of the partners. In the second part of this paper [13], an inductive argument is provided to deal with higher-order encounters.Comment: to appear on Nonlinearit

    On the Accuracy of the Semiclassical Trace Formula

    Full text link
    The semiclassical trace formula provides the basic construction from which one derives the semiclassical approximation for the spectrum of quantum systems which are chaotic in the classical limit. When the dimensionality of the system increases, the mean level spacing decreases as d\hbar^d, while the semiclassical approximation is commonly believed to provide an accuracy of order 2\hbar^2, independently of d. If this were true, the semiclassical trace formula would be limited to systems in d <= 2 only. In the present work we set about to define proper measures of the semiclassical spectral accuracy, and to propose theoretical and numerical evidence to the effect that the semiclassical accuracy, measured in units of the mean level spacing, depends only weakly (if at all) on the dimensionality. Detailed and thorough numerical tests were performed for the Sinai billiard in 2 and 3 dimensions, substantiating the theoretical arguments.Comment: LaTeX, 31 pages, 14 figures, final version (minor changes

    Universal quantum signature of mixed dynamics in antidot lattices

    Get PDF
    We investigate phase coherent ballistic transport through antidot lattices in the generic case where the classical phase space has both regular and chaotic components. It is shown that the conductivity fluctuations have a non-Gaussian distribution, and that their moments have a power-law dependence on a semiclassical parameter, with fractional exponents. These exponents are obtained from bifurcating periodic orbits in the semiclassical approximation. They are universal in situations where sufficiently long orbits contribute.Comment: 7 page

    Periodic-Orbit Theory of Universality in Quantum Chaos

    Full text link
    We argue semiclassically, on the basis of Gutzwiller's periodic-orbit theory, that full classical chaos is paralleled by quantum energy spectra with universal spectral statistics, in agreement with random-matrix theory. For dynamics from all three Wigner-Dyson symmetry classes, we calculate the small-time spectral form factor K(τ)K(\tau) as power series in the time τ\tau. Each term τn\tau^n of that series is provided by specific families of pairs of periodic orbits. The contributing pairs are classified in terms of close self-encounters in phase space. The frequency of occurrence of self-encounters is calculated by invoking ergodicity. Combinatorial rules for building pairs involve non-trivial properties of permutations. We show our series to be equivalent to perturbative implementations of the non-linear sigma models for the Wigner-Dyson ensembles of random matrices and for disordered systems; our families of orbit pairs are one-to-one with Feynman diagrams known from the sigma model.Comment: 31 pages, 17 figure

    Diagonal approximation of the form factor of the unitary group

    Full text link
    The form factor of the unitary group U(N) endowed with the Haar measure characterizes the correlations within the spectrum of a typical unitary matrix. It can be decomposed into a sum over pairs of ``periodic orbits'', where by periodic orbit we understand any sequence of matrix indices. From here the diagonal approximation can be defined in the usual fashion as a sum only over pairs of identical orbits. We prove that as we take the dimension NN to infinity, the diagonal approximation becomes ``exact'', that is converges to the full form factor.Comment: 9 page

    Semiclassical Approach to Chaotic Quantum Transport

    Full text link
    We describe a semiclassical method to calculate universal transport properties of chaotic cavities. While the energy-averaged conductance turns out governed by pairs of entrance-to-exit trajectories, the conductance variance, shot noise and other related quantities require trajectory quadruplets; simple diagrammatic rules allow to find the contributions of these pairs and quadruplets. Both pure symmetry classes and the crossover due to an external magnetic field are considered.Comment: 33 pages, 11 figures (appendices B-D not included in journal version

    Leading off-diagonal contribution to the spectral form factor of chaotic quantum systems

    Get PDF
    We semiclassically derive the leading off-diagonal correction to the spectral form factor of quantum systems with a chaotic classical counterpart. To this end we present a phase space generalization of a recent approach for uniformly hyperbolic systems (M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001); M. Sieber, J. Phys. A: Math. Gen. 35, L613 (2002)). Our results coincide with corresponding random matrix predictions. Furthermore, we study the transition from the Gaussian orthogonal to the Gaussian unitary ensemble.Comment: 8 pages, 2 figures; J. Phys. A: Math. Gen. (accepted for publication

    Semiclassical form factor for spectral and matrix element fluctuations of multi-dimensional chaotic systems

    Get PDF
    We present a semiclassical calculation of the generalized form factor which characterizes the fluctuations of matrix elements of the quantum operators in the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on some recently developed techniques for the spectral form factor of systems with hyperbolic and ergodic underlying classical dynamics and f=2 degrees of freedom, that allow us to go beyond the diagonal approximation. First we extend these techniques to systems with f>2. Then we use these results to calculate the generalized form factor. We show that the dependence on the rescaled time in units of the Heisenberg time is universal for both the spectral and the generalized form factor. Furthermore, we derive a relation between the generalized form factor and the classical time-correlation function of the Weyl symbols of the quantum operators.Comment: some typos corrected and few minor changes made; final version in PR

    Correlations between spectra with different symmetry: any chance to be observed?

    Full text link
    A standard assumption in quantum chaology is the absence of correlation between spectra pertaining to different symmetries. Doubts were raised about this statement for several reasons, in particular, because in semiclassics spectra of different symmetry are expressed in terms of the same set of periodic orbits. We reexamine this question and find absence of correlation in the universal regime. In the case of continuous symmetry the problem is reduced to parametric correlation, and we expect correlations to be present up to a certain time which is essentially classical but larger than the ballistic time
    corecore