2,896 research outputs found
Semiclassical universality of parametric spectral correlations
We consider quantum systems with a chaotic classical limit that depend on an
external parameter, and study correlations between the spectra at different
parameter values. In particular, we consider the parametric spectral form
factor which depends on a scaled parameter difference . For
parameter variations that do not change the symmetry of the system we show by
using semiclassical periodic orbit expansions that the small expansion
of the form factor agrees with Random Matrix Theory for systems with and
without time reversal symmetry.Comment: 18 pages, no figure
Partner orbits and action differences on compact factors of the hyperbolic plane. Part I: Sieber-Richter pairs
Physicists have argued that periodic orbit bunching leads to universal
spectral fluctuations for chaotic quantum systems. To establish a more detailed
mathematical understanding of this fact, it is first necessary to look more
closely at the classical side of the problem and determine orbit pairs
consisting of orbits which have similar actions. In this paper we specialize to
the geodesic flow on compact factors of the hyperbolic plane as a classical
chaotic system. We prove the existence of a periodic partner orbit for a given
periodic orbit which has a small-angle self-crossing in configuration space
which is a `2-encounter'; such configurations are called `Sieber-Richter pairs'
in the physics literature. Furthermore, we derive an estimate for the action
difference of the partners. In the second part of this paper [13], an inductive
argument is provided to deal with higher-order encounters.Comment: to appear on Nonlinearit
On the Accuracy of the Semiclassical Trace Formula
The semiclassical trace formula provides the basic construction from which
one derives the semiclassical approximation for the spectrum of quantum systems
which are chaotic in the classical limit. When the dimensionality of the system
increases, the mean level spacing decreases as , while the
semiclassical approximation is commonly believed to provide an accuracy of
order , independently of d. If this were true, the semiclassical trace
formula would be limited to systems in d <= 2 only. In the present work we set
about to define proper measures of the semiclassical spectral accuracy, and to
propose theoretical and numerical evidence to the effect that the semiclassical
accuracy, measured in units of the mean level spacing, depends only weakly (if
at all) on the dimensionality. Detailed and thorough numerical tests were
performed for the Sinai billiard in 2 and 3 dimensions, substantiating the
theoretical arguments.Comment: LaTeX, 31 pages, 14 figures, final version (minor changes
Universal quantum signature of mixed dynamics in antidot lattices
We investigate phase coherent ballistic transport through antidot lattices in
the generic case where the classical phase space has both regular and chaotic
components. It is shown that the conductivity fluctuations have a non-Gaussian
distribution, and that their moments have a power-law dependence on a
semiclassical parameter, with fractional exponents. These exponents are
obtained from bifurcating periodic orbits in the semiclassical approximation.
They are universal in situations where sufficiently long orbits contribute.Comment: 7 page
Periodic-Orbit Theory of Universality in Quantum Chaos
We argue semiclassically, on the basis of Gutzwiller's periodic-orbit theory,
that full classical chaos is paralleled by quantum energy spectra with
universal spectral statistics, in agreement with random-matrix theory. For
dynamics from all three Wigner-Dyson symmetry classes, we calculate the
small-time spectral form factor as power series in the time .
Each term of that series is provided by specific families of pairs of
periodic orbits. The contributing pairs are classified in terms of close
self-encounters in phase space. The frequency of occurrence of self-encounters
is calculated by invoking ergodicity. Combinatorial rules for building pairs
involve non-trivial properties of permutations. We show our series to be
equivalent to perturbative implementations of the non-linear sigma models for
the Wigner-Dyson ensembles of random matrices and for disordered systems; our
families of orbit pairs are one-to-one with Feynman diagrams known from the
sigma model.Comment: 31 pages, 17 figure
Diagonal approximation of the form factor of the unitary group
The form factor of the unitary group U(N) endowed with the Haar measure
characterizes the correlations within the spectrum of a typical unitary matrix.
It can be decomposed into a sum over pairs of ``periodic orbits'', where by
periodic orbit we understand any sequence of matrix indices. From here the
diagonal approximation can be defined in the usual fashion as a sum only over
pairs of identical orbits. We prove that as we take the dimension to
infinity, the diagonal approximation becomes ``exact'', that is converges to
the full form factor.Comment: 9 page
Semiclassical Approach to Chaotic Quantum Transport
We describe a semiclassical method to calculate universal transport
properties of chaotic cavities. While the energy-averaged conductance turns out
governed by pairs of entrance-to-exit trajectories, the conductance variance,
shot noise and other related quantities require trajectory quadruplets; simple
diagrammatic rules allow to find the contributions of these pairs and
quadruplets. Both pure symmetry classes and the crossover due to an external
magnetic field are considered.Comment: 33 pages, 11 figures (appendices B-D not included in journal version
Leading off-diagonal contribution to the spectral form factor of chaotic quantum systems
We semiclassically derive the leading off-diagonal correction to the spectral
form factor of quantum systems with a chaotic classical counterpart. To this
end we present a phase space generalization of a recent approach for uniformly
hyperbolic systems (M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001); M.
Sieber, J. Phys. A: Math. Gen. 35, L613 (2002)). Our results coincide with
corresponding random matrix predictions. Furthermore, we study the transition
from the Gaussian orthogonal to the Gaussian unitary ensemble.Comment: 8 pages, 2 figures; J. Phys. A: Math. Gen. (accepted for publication
Semiclassical form factor for spectral and matrix element fluctuations of multi-dimensional chaotic systems
We present a semiclassical calculation of the generalized form factor which
characterizes the fluctuations of matrix elements of the quantum operators in
the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on
some recently developed techniques for the spectral form factor of systems with
hyperbolic and ergodic underlying classical dynamics and f=2 degrees of
freedom, that allow us to go beyond the diagonal approximation. First we extend
these techniques to systems with f>2. Then we use these results to calculate
the generalized form factor. We show that the dependence on the rescaled time
in units of the Heisenberg time is universal for both the spectral and the
generalized form factor. Furthermore, we derive a relation between the
generalized form factor and the classical time-correlation function of the Weyl
symbols of the quantum operators.Comment: some typos corrected and few minor changes made; final version in PR
Correlations between spectra with different symmetry: any chance to be observed?
A standard assumption in quantum chaology is the absence of correlation
between spectra pertaining to different symmetries. Doubts were raised about
this statement for several reasons, in particular, because in semiclassics
spectra of different symmetry are expressed in terms of the same set of
periodic orbits. We reexamine this question and find absence of correlation in
the universal regime. In the case of continuous symmetry the problem is reduced
to parametric correlation, and we expect correlations to be present up to a
certain time which is essentially classical but larger than the ballistic time
- …