17 research outputs found

    Pharmacokinetics in patients of an anti-carcinoembryonic antigen antibody radiolabeled with indium-111 using a novel diethylenetriamine pentaacetic acid chelator

    Get PDF
    The pharmacokinetics of the C110 anti-carcinoembryonic antigen antibody radiolabeled with 111In via a novel benzylisothiocyanate derivative of diethylenetriamine pentaacetic acid have been determined in 12 patients. The chelator was attached to the protein via a thiourea bond and in such a way that all 5 carboxymethyl arms were presumably able to participate in chelation. Patients with known or suspected colorectal carcinoma received between 5 and 20 mg of the IgG antibody labeled with 5 mCi of 111In. Individual organ radioactivity levels were quantitated, and serum and urine samples were analyzed, principally by size exclusion high-performance liquid chromatography (HPLC). Total urinary excretion averaged 0.18% of the injected dose/h with large patient to patient variation. At early times postadministration (less than 8 h) the predominant radiolabeled species in urine was free diethylenetriamine pentaacetic acid most probably administered as a small radiocontaminant in the injectate. Thereafter, radioactivity in urine was primarily present as a low molecular weight catabolic product. Analysis of serum by size exclusion HPLC occasionally showed 3 radioactivity peaks, 2 of which are due to circulating immune complexes and labeled antibody. The third peak is of low molecular weight and is due to one or more products of antibody catabolism. Transchelation of 111In to circulating transferrin was observed but at modest levels. Quantitation of organ radioactivity showed that 18 +/- 4 (SD)% of the injected dose was in the liver at 1 day postadministration and 1.4 +/- 1.1 and 1.2 +/- 0.9% was in the spleen and in both kidneys, respectively, at this time. The mean half-life for clearance of total injected radioactivity was fitted to a single exponential and was found to be 34 h (SD, 14 h; N = 13) and that for antibody alone, assessed by size exclusion HPLC analysis of serum samples, was calculated to be 22 h (SD, 8 h; N = 10). Neither of these values nor organ radioactivity levels were affected by antibody-loading dose

    Pharmacokinetics of 111In-labeled OC-125 antibody in cancer patients compared with the 19-9 antibody

    Get PDF
    We recently reported on the pharmacokinetics in 14 cancer patients of the 19-9 antibody radiolabeled with 111In. We have now repeated this investigation in 18 cancer patients using the OC-125 antibody, in part to compare the in vivo behavior of two murine monoclonal antibodies of the same subclass administered as the F(ab\u27)2 fragments, by the same route and at the same dose. As in the earlier investigation, 1 mg of fragments was infused i.v., and organ quantitation was obtained for up to 72 h along with frequent blood and urine samples for chromatographic evaluation. Analysis of urine showed that activity clearance by this route amounted to 0.29%/h and consisted of labeled DTPA only in early samples and metabolic products thereafter. Analysis of serum samples often showed the presence of a high-molecular-weight species appearing within 24 h. This species is probably due to antibody binding to circulating antigen, although the percentage of circulating activity present as this species did not correlate well with circulating antigen levels. As before, organ accumulation was greatest in the liver, although levels were significantly reduced (12% compared to 20% of administered dose at 24 h, P less than 0.01). Plasma clearance was also significantly different: whereas the label in the case of the OC-125 antibody showed one-compartment clearance kinetics and remained in the plasma compartment, in the 19-9 case the label diffused to a second, unidentified compartment

    Patient biodistribution of intraperitoneally administered yttrium-90-labeled antibody

    No full text
    Although 90Y is one of the best radionuclides for radioimmunotherapeutic applications, the lack of gamma rays in its decay complicates the estimation of radiation dose since its biodistribution cannot be accurately determined by external imaging. A limited clinical trial has been conducted with tracer doses (1 mCi) of 90Y in five patients who then received second-look surgery such that tissue samples were obtained for accurate radioactivity quantitation by in vitro counting. The anti-ovarian antibody OC-125 as the F(ab\u27)2 fragment was coupled with diethylenetriaminepentaacetic acid, radiolabeled with 90Y and administered intraperitoneally to patients with suspected or documented ovarian cancer. Size exclusion and ion exchange high performance liquid chromatography analysis of patient ascitic fluid and serum samples showed no evidence of radiolabel instability although a high molecular weight species (presumably immune complex) was observed in three patients. Total urinary excretion of radioactivity prior to surgery averaged 7% of the administered radioactivity while at surgery the mean organ accumulation was 8% of the administered radioactivity in serum, 10% in liver, 7% in bone marrow, and 19% in bone with large patient to patient variation. The mean tumor/normal tissue radioactivity ratio varied between 3 and 25. On the assumption that the above radioactivity levels were achieved immediately following administration, that the radioactivity remained in situ until decayed and that the dimensions of tumor were sufficient to completely attenuate the emissions of 90Y, the dose to tumor for a 1-mCi administration would be approximately 50 rad with normal tissues receiving approximately 8 rad
    corecore