41 research outputs found

    Purification of high-quality RNA from a small number of fluorescence activated cell sorted zebrafish cells for RNA sequencing purposes

    Get PDF
    Background: Transgenic zebrafish lines with the expression of a fluorescent reporter under the control of a cell-type specific promoter, enable transcriptome analysis of FACS sorted cell populations. RNA quality and yield are key determinant factors for accurate expression profiling. Limited cell number and FACS induced cellular stress make RNA isolation of sorted zebrafish cells a delicate process. We aimed to optimize a workflow to extract sufficient amounts of high-quality RNA from a limited number of FACS sorted cells from Tg(fli1a:GFP) zebrafish embryos, which can be used for accurate gene expression analysis. Results: We evaluated two suitable RNA isolation kits (theRNAqueous micro and the RNeasy plus micro kit) and determined that sorting cells directly into lysis buffer is a critical step for success. For low cell numbers, this ensures direct cell lysis, protects RNA from degradation and results in a higher RNA quality and yield. We showed that this works well up to 0.5x dilution of the lysis buffer with sorted cells. In our sort settings, this corresponded to 30,000 and 75,000 cells for the RNAqueous micro kit and RNeasy plus micro kit respectively. Sorting more cells dilutes the lysis buffer too much and requires the use of a collection buffer. We also demonstrated that an additional genomic DNA removal step after RNA isolation is required to completely clear the RNA from any contaminating genomic DNA. For cDNA synthesis and library preparation, we combined SmartSeq v4 full length cDNA library amplification, Nextera XT tagmentation and sample barcoding. Using this workflow, we were able to generate highly reproducible RNA sequencing results. Conclusions: The presented optimized workflow enables to generate high quality RNA and allows accurate transcriptome profiling of small populations of sorted zebrafish cells

    PHF6 expression levels impact human hematopoietic stem cell differentiation

    Get PDF
    Transcriptional control of hematopoiesis involves complex regulatory networks and functional perturbations in one of these components often results in malignancies. Loss-of-function mutations in PHF6, encoding a presumed epigenetic regulator, have been primarily described in T cell acute lymphoblastic leukemia (T-ALL) and the first insights into its function in normal hematopoiesis only recently emerged from mouse modeling experiments. Here, we investigated the role of PHF6 in human blood cell development by performing knockdown studies in cord blood and thymus-derived hematopoietic precursors to evaluate the impact on lineage differentiation in well-established in vitro models. Our findings reveal that PHF6 levels differentially impact the differentiation of human hematopoietic progenitor cells into various blood cell lineages, with prominent effects on lymphoid and erythroid differentiation. We show that loss of PHF6 results in accelerated human T cell development through reduced expression of NOTCH1 and its downstream target genes. This functional interaction in developing thymocytes was confirmed in vivo using a phf6-deficient zebrafish model that also displayed accelerated developmental kinetics upon reduced phf6 or notch1 activation. In summary, our work reveals that appropriate control of PHF6 expression is important for normal human hematopoiesis and provides clues towards the role of PHF6 in T-ALL development

    TBX2 is a neuroblastoma core regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets

    Get PDF
    Chromosome 17q gains are almost invariably present in high-risk neuroblastoma cases. Here, we perform an integrative epigenomics search for dosage-sensitive transcription factors on 17q marked by H3K27ac defined super-enhancers and identify TBX2 as top candidate gene. We show that TBX2 is a constituent of the recently established core regulatory circuitry in neuroblastoma with features of a cell identity transcription factor, driving proliferation through activation of p21-DREAM repressed FOXM1 target genes. Combined MYCN/TBX2 knockdown enforces cell growth arrest suggesting that TBX2 enhances MYCN sustained activation of FOXM1 targets. Targeting transcriptional addiction by combined CDK7 and BET bromodomain inhibition shows synergistic effects on cell viability with strong repressive effects on CRC gene expression and p53 pathway response as well as several genes implicated in transcriptional regulation. In conclusion, we provide insight into the role of the TBX2 CRC gene in transcriptional dependency of neuroblastoma cells warranting clinical trials using BET and CDK7 inhibitors

    Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia

    Get PDF
    Relapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib. Importantly, these same drug combinations effectively killed a subset of relapse and dexamethasone-resistant zebrafish T-ALL. Clinical trials are currently underway using the combination of mTORC1 inhibitor temsirolimus and dasatinib in other pediatric cancer indications, leading us to prioritize this therapy for preclinical testing. This combination effectively curbed T-ALL growth in human cell lines and primary human T-ALL and was well tolerated and effective in suppressing leukemia growth in patient-derived xenografts (PDX) grown in mice. Mechanistically, dasatinib inhibited phosphorylation and activation of the lymphocyte-specific protein tyrosine kinase (LCK) to blunt the T-cell receptor (TCR) signaling pathway, and when complexed with mTORC1 inhibition, induced potent T-ALL cell killing through reducing MCL-1 protein expression. In total, our work uncovered unexpected roles for the LCK kinase and its regulation of downstream TCR signaling in suppressing apoptosis and driving continued leukemia growth. Analysis of a wide array of primary human T-ALLs and PDXs grown in mice suggest that combination of temsirolimus and dasatinib treatment will be efficacious for a large fraction of human T-ALLs.Peer reviewe

    RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition

    Get PDF
    High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential

    Exploring the role of PHF6 in malignant and normal hematopoiesis through zebrafish modeling

    Full text link

    Spitz tumor with RAF1 fusion : a report of 3 cases

    Full text link
    Spitz tumors are melanocytic neoplasms morphologically characterized by spindled and/or epithelioid cells and specific stromal and epidermal changes associated with mutually exclusive fusion kinases involving ALK, ROS1, NTRK1, NTRK2, NTRK3, MET and RET, BRAF and MAP3K8 genes or, less commonly, HRAS mutation. RAF1 fusions have been recently detected in cutaneous melanocytic neoplasms, including conventional melanoma, congenital nevus and BAP-1 inactivated tumors. We report herewith three Spitz neoplasms with a RAF1 fusion, including a previously reported CTDSPL::RAF1 fusion and two novel PPAP2B::RAF1 and ATP2B4::RAF1 fusions. Two cases were classified as Spitz nevus, while the remaining neoplasm was classified as Spitz melanoma at the time of the diagnosis, given 9p21 homozygous deletion and positive sentinel lymph node biopsy. We suggest that RAF1 fused melanocytic neoplasms can represent a novel subgroup of Spitz tumors, with a RAF1 fusion representing an oncogenic driver
    corecore