3 research outputs found

    Organic source of vanadium preparation and physical-chemical characteristic

    No full text
    Antidiabetic properties of vanadium are known more than 100 years, however the researches of specific therapeutic usage of vanadium were conducted only in the last two decades. Along with, the organic vanadium compounds are more harmless in comparison with inorganic vanadium salts. Thus, the development of method of obtaining the organic source of vanadium with high bioavailability is prospective field. Aim of the work was to obtain and provide the physical-chemical characterization of vanadium complex with enzymatic hydrolysate of soy protein isolate (SPI), obtained by one-stage enzymatic hydrolysis. Material and methods. The complex was obtained at room temperature: 10% water solu-tion of SPI was mixed with 25% solution of vanadium salt (VOS04'xxH20) in ratio 10:1 (in dry matter). The reaction was kept during 1 hat constant mixing with pH kept at 7.0-7.1 with 1.0 MNaOH. The concentration of vanadium was determined in dry product by means of inductively coupled plasma mass-spectrometry. The chromatograms of SPI and V-SPI were obtained by means of size-exclusion high-pressure liquid chromatography, and then were integrated by weight method in the range of free till full column volume. Results and discussion. The obtained complex of vanadium with SPI enzymatic hydrolysate (V-SPI) was water-soluble and contained 15.8 mg of vanadium per gram of product dry weight. Analysis of the molecular weight distribution of the peptide fractions of the original SPI enzymatic hydrolysate and the V-SPI complex showed that more than 87% of the vanadium complex was in peptide fractions with molecular weights more than 4.1 kD, including more than 75% of vanadium contained in fractions with molecular weights from 14.6 to 4.1 kD. Conclusion. The experimental evaluation in vivo will be the next stage of this research. The complex bioavailability and its effects on carbohydrate and lipid metabolism of Wistar rats with obesity will be evaluated. Β© 2019 Nutritec. All rights reserved

    ΠžΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ источник ванадия. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСская характСристика

    No full text
    Antidiabetic properties of vanadium are known more than 100 years, however the researches of specific therapeutic usage of vanadium were conducted only in the last two decades. Along with, the organic vanadium compounds are more harmless in comparison with inorganic vanadium salts. Thus, the development of method of obtaining the organic source of vanadium with high bioavailability is prospective field. Aim of the work was to obtain and provide the physical-chemical characterization of vanadium complex with enzymatic hydrolysate of soy protein isolate (SPI), obtained by one-stage enzymatic hydrolysis. Materialand methods. The complex was obtained at room temperature: 10% water solution of SPI was mixed with 25% solution of vanadium salt (VOSO4Γ—Ρ…H2O) in ratio 10:1 (in dry matter). The reaction was kept during 1 h at constant mixing with pH kept at 7.0- 7.1 with 1.0 M NaOH. The concentration of vanadium was determined in dry product by means of inductively coupled plasma mass-spectrometry. The chromatograms of SPI and V-SPI were obtained by means of size-exclusion high-pressure liquid chromatography, and then were integrated by weight method in the range of free till full column volume. Results and discussion. The obtained complex of vanadium with SPI enzymatic hydrolysate (V-SPI) was water-soluble and contained 15.8 mg of vanadium per gram of product dry weight. Analysis of the molecular weight distribution of the peptide fractions of the original SPI enzymatic hydrolysate and the V-SPI complex showed that more than 87% of the vanadium complex was in peptide fractions with molecular weights more than 4.1 kD, including more than 75% of vanadium contained in fractions with molecular weights from 14.6 to 4.1 kD. Conclusion. The experimental evaluation in vivo will be the next stage of this research. The complex bioavailability and its effects on carbohydrate and lipid metabolism of Wistar rats with obesity will be evaluated.АнтидиабСтичСскиС свойства соСдинСний ванадия извСстны ΡƒΠΆΠ΅ Π±ΠΎΠ»Π΅Π΅ 100 Π»Π΅Ρ‚, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² послСдниС 20 Π»Π΅Ρ‚ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования ΠΏΠΎ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌΡƒ тСрапСвтичСскому использованию соСдинСний ванадия. ΠŸΡ€ΠΈ этом органичСскиС соСдинСния ванадия Π±ΠΎΠ»Π΅Π΅ бСзопасны ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с нСорганичСскими солями этого микроэлСмСнта. БоотвСтствСнно пСрспСктивной прСдставляСтся Ρ€Π°Π· Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° получСния органичСского источника ванадия, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ высокой Π±ΠΈΠΎΠ΄ΠΎΡΡ‚ΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСская характСристика комплСкса Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…Π²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ванадия с Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π°Ρ‚ΠΎΠΌ изолята соСвого Π±Π΅Π»ΠΊΠ° (Π€Π“Π˜Π‘Π‘), ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎ одностадийной схСмС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ»ΠΈΠ·Π° Π² ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°Ρ…. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π΅Π°ΠΊΡ†ΠΈΡŽ комплСксообразования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅: ΠΊ 10% Π²ΠΎΠ΄Π½ΠΎΠΌΡƒ раствору Π€Π“Π˜Π‘Π‘ добавляли ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠΈ 25% раствор соли ванадия (VOSO4Γ—Ρ…H2O) Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎ сухим вСщСствам 10:1. Π Π΅Π°ΠΊΡ†ΠΈΡŽ Π²Π΅Π»ΠΈ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 Ρ‡ ΠΏΡ€ΠΈ постоянном ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠΈ с ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ΠΌ рН Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси 7,0-7,1 1,0 М NaOH. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ ванадия опрСдСляли Π² сухом ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ масс-спСктромСтрии с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ. Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ Π€Π“Π˜Π‘Π‘ ΠΈ комплСкса ванадия с Π€Π“Π˜Π‘Π‘ (V-Π€Π“Π˜Π‘Π‘) ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ эксклюзионной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ высокого давлСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π·Π°Ρ‚Π΅ΠΌ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ вСсовым ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ‚ свободного Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ объСма хроматографичСской ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… условиях комплСкс V-Π€Π“Π˜Π‘Π‘ Ρ…ΠΎΡ€ΠΎΡˆΠΎ растворялся Π² Π²ΠΎΠ΄Π΅ ΠΈ содСрТал 15,8 ΠΌΠ³ ванадия Π½Π° 1 Π³ сухого ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°. Анализ молСкулярно-массового распрСдСлСния ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ исходного Π€Π“Π˜Π‘Π‘ ΠΈ комплСкса V-Π€Π“Π˜Π‘Π‘ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ 87% ванадия ΠΊΠΎΠΌΠΏ лСкса Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π² составС ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ с молСкулярными массами Π±ΠΎΠ»Π΅Π΅ 4,1 ΠΊΠ”Π°, Π² Ρ‚ΠΎΠΌ числС Π±ΠΎΠ»Π΅Π΅ 75% ванадия ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π»ΠΎΡΡŒ Π²ΠΎ фракциях с молСкулярными массами ΠΎΡ‚ 14,6 Π΄ΠΎ 4,1 ΠΊΠ”Π°. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠΌ дальнСйшСго исслСдования Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° in vivo биодоступности ΠΈ влияния Π½Π° ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Ρ‹ΠΉ ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹ΠΉ ΠΎΠ±ΠΌΠ΅Π½ Ρƒ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… с ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌ ΠΎΠΆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΌΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ источника органичСской Ρ„ΠΎΡ€ΠΌΡ‹ ванадия-комплСкса
    corecore