154 research outputs found
Population history from the Neolithic to present on the Mediterranean island of Sardinia: an ancient DNA perspective
Recent ancient DNA studies of western Eurasia have revealed a dynamic history of admixture, with evidence for major migrations during the Neolithic and Bronze Age. The population of the Mediterranean island of Sardinia has been notable in these studies â} Neolithic individuals from mainland Europe cluster more closely with Sardinian individuals than with all other present-day Europeans. The current model to explain this result is that Sardinia received an initial influx of Neolithic ancestry and then remained relatively isolated from expansions in the later Neolithic and Bronze Age that took place in continental Europe. To test this model, we generated genome-wide capture data (approximately 1.2 million variants) for 43 ancient Sardinian individuals spanning the Neolithic through the Bronze Age, including individuals from Sardinia{â}s Nuragic culture, which is known for the construction of numerous large stone towers throughout the island. We analyze these new samples in the context of previously generated genome-wide ancient DNA data from 972 ancient individuals across western Eurasia and whole-genome sequence data from approximately 1,500 modern individuals from Sardinia. The ancient Sardinian individuals show a strong affinity to western Mediterranean Neolithic populations and we infer a high degree of genetic continuity on the island from the Neolithic (around fifth millennium BCE) through the Nuragic period (second millennium BCE). In particular, during the Bronze Age in Sardinia, we do not find significant levels of the {â}Steppe{â ancestry that was spreading in many other parts of Europe at that time. We also characterize subsequent genetic influx between the Nuragic period and the present. We detect novel, modest signals of admixture between 1,000 BCE and present-day, from ancestry sources in the eastern and northern Mediterranean. Within Sardinia, we confirm that populations from the more geographically isolated mountainous provinces have experienced elevated levels of genetic drift and that northern and southwestern regions of the island received more gene flow from outside Sardinia. Overall, our genetic analysis sheds new light on the origin of Neolithic settlement on Sardinia, reinforces models of genetic continuity on the island, and provides enhanced power to detect post-Bronze-Age gene flow. Together, these findings offer a refined demographic model for future medical genetic studies in Sardinia
Genome-wide search for genes affecting the age at diagnosis of type 1 diabetes
Background:Â Type 1 diabetes (T1D) is an autoimmune disease affecting individuals in the early years of life. Although previous studies have identified genetic loci influencing T1D diagnosis age, these studies did not investigate the genome with high resolution.Objective and methods:Â We performed a genome-wide meta-analysis for age at diagnosis with cohorts from Finland (Finnish Diabetic Nephropathy Study), the United Kingdom (UK Genetic Resource Investigating Diabetes) and Sardinia. Through SNP associations, transcriptome-wide association analysis linked T1D diagnosis age and gene expression.Results:Â We identified two chromosomal regions associated with T1D diagnosis age: multiple independent variants in the HLA region on chromosome 6 and a locus on chromosome 17q12. We performed gene-level association tests with transcriptome prediction models from two whole blood datasets, lymphocyte cell line, spleen, pancreas and small intestine tissues. Of the non-HLA genes, lower PNMT expression in whole blood, and higher IKZF3 and ZPBP2, and lower ORMDL3 and GSDMB transcription levels in multiple tissues were associated with lower T1D diagnosis age (FDR = 0.05). These genes lie on chr17q12 which is associated with T1D, other autoimmune diseases, and childhood asthma. Additionally, higher expression of PHF20L1, a gene not previously implicated in T1D, was associated with lower diagnosis age in lymphocytes, pancreas, and spleen. Altogether, the non-HLA associations were enriched in open chromatin in various blood cells, blood vessel tissues and foetal thymus tissue.Conclusion:Â Multiple genes on chr17q12 and PHF20L1 on chr8 were associated with T1D diagnosis age and only further studies may elucidate the role of these genes for immunity and T1D onset.</p
The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits
PMCID: PMC3410907This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Genotype calling and haplotyping in parent-offspring trios
Emerging sequencing technologies allow common and rare variants to be systematically assayed across the human genome in many individuals. In order to improve variant detection and genotype calling, raw sequence data are typically examined across many individuals. Here, we describe a method for genotype calling in settings where sequence data are available for unrelated individuals and parent-offspring trios and show that modeling trio information can greatly increase the accuracy of inferred genotypes and haplotypes, especially on low to modest depth sequencing data. Our method considers both linkage disequilibrium (LD) patterns and the constraints imposed by family structure when assigning individual genotypes and haplotypes. Using simulations, we show that trios provide higher genotype calling accuracy across the frequency spectrum, both overall and at hard-to-call heterozygous sites. In addition, trios provide greatly improved phasing accuracyâimproving the accuracy of downstream analyses (such as genotype imputation) that rely on phased haplotypes. To further evaluate our approach, we analyzed data on the first 508 individuals sequenced by the SardiNIA sequencing project. Our results show that our method reduces the genotyping error rate by 50% compared with analysis using existing methods that ignore family structure. We anticipate our method will facilitate genotype calling and haplotype inference for many ongoing sequencing projects
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis
A population-specific reference panel empowers genetic studies of Anabaptist populations
Genotype imputation is a powerful strategy for achieving the large sample sizes required for identification of variants underlying complex phenotypes, but imputation of rare variants remains problematic. Genetically isolated populations offer one solution, however population-specific reference panels are needed to assure optimal imputation accuracy and allele frequency estimation. Here we report the Anabaptist Genome Reference Panel (AGRP), the first whole-genome catalogue of variants and phased haplotypes in people of Amish and Mennonite ancestry. Based on high-depth whole-genome sequence (WGS) from 265 individuals, the AGRP contains >12âM high-confidence single nucleotide variants and short indels, of which ~12.5% are novel. These Anabaptist-specific variants were more deleterious than variants with comparable frequencies observed in the 1000 Genomes panel. About 43,000 variants showed enriched allele frequencies in AGRP, consistent with drift. When combined with the 1000 Genomes Project reference panel, the AGRP substantially improved imputation, especially for rarer variants. The AGRP is freely available to researchers through an imputation server
Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia
The island of Sardinia has been of particular interest to geneticists for decades. The current model for Sardinia's genetic history describes the island as harboring a founder population that was established largely from the Neolithic peoples of southern Europe and remained isolated from later Bronze Age expansions on the mainland. To evaluate this model, we generate genome-wide ancient DNA data for 70 individuals from 21 Sardinian archaeological sites spanning the Middle Neolithic through the Medieval period. The earliest individuals show a strong affinity to western Mediterranean Neolithic populations, followed by an extended period of genetic continuity on the island through the Nuragic period (second millennium BCE). Beginning with individuals from Phoenician/Punic sites (first millennium BCE), we observe spatially-varying signals of admixture with sources principally from the eastern and northern Mediterranean. Overall, our analysis sheds light on the genetic history of Sardinia, revealing how relationships to mainland populations shifted over time.Joseph H. Marcus ... Wolfgang Haak ... et al
Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel
Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF) >= 5% and low-frequency variants (0.5Peer reviewe
Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits
Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common-and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.Peer reviewe
Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course
Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 Ă 10â8) near FTO (P = 3.72 Ă 10â23), TMEM18 (P = 3.24 Ă 10â17), MC4R (P = 4.41 Ă 10â17), TNNI3K (P = 4.32 Ă 10â11), SEC16B (P = 6.24 Ă 10â9), GNPDA2 (P = 1.11 Ă 10â8) and POMC (P = 4.94 Ă 10â8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 Ă 10â5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18-90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different age
- âŠ