4 research outputs found

    Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation

    Get PDF
    Acute respiratory distress syndrome (ARDS) is a common and often fatal inflammatory lung condition without effective targeted therapies. Regulatory T cells (Tregs) resolve lung inflammation, but mechanisms that enhance Tregs to promote resolution of established damage remain unknown. DNA demethylation at the forkhead box protein 3 (Foxp3) locus and other key Treg loci typify the Treg lineage. To test how dynamic DNA demethylation affects lung injury resolution, we administered the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) to wild-type (WT) mice beginning 24 hours after intratracheal LPS-induced lung injury. Mice that received DAC exhibited accelerated resolution of their injury. Lung CD4+CD25hi Foxp3+ Tregs from D AC-treated WT mice increased in number and displayed enhanced Foxp3 expression, activation state, suppressive phenotype, and proliferative capacity. Lymphocyte-deficient recombinase activating gene-1-null mice and Treg-depleted (diphtheria toxin-treated Foxp3DTR) mice did not resolve their injury in response to DAC. Adoptive transfer of 2 Ă—105 DAC-treated, but not vehicle-treated, exogenous Tregs rescued Treg-deficient mice from ongoing lung inflammation. In addition, in WT mice with influenza-induced lung inflammation, DAC rescue treatment facilitated recovery of their injury and promoted an increase in lung Treg number. Thus, DNA methyltransferase inhibition, at least in part, augments Treg number and function to accelerate repair of experimental lung injury. Epigenetic pathways represent novel manipulable targets for the treatment of ARDS

    Anemia and adverse outcomes in a chronic obstructive pulmonary disease population with a high burden of comorbidities an analysis from SPIROMICS

    Get PDF
    Rationale: Chronic obstructive pulmonary disease (COPD) is a common cause of morbidity and associated with a significant burden of comorbidities. Although anemia is associated with adverse outcomes in COPD, its contribution to outcomes in individuals with other comorbid chronic diseases is not well understood. Objectives: This study examines the association of anemia with outcomes in a large, well-characterized COPD cohort, and attempts to understand the contribution of anemia to outcomes and phenotypes in individuals with other comorbidities. Methods: Participants with COPD from SPIROMICS (the Subpopulations and Intermediate Outcome Measures in COPD Study) were analyzed in adjusted models to determine the associations of normocytic anemia with clinical outcomes, computed tomographic measures, and biomarkers. Analysis was additionally performed to understand the independence and possible interactions related to cardiac and metabolic comorbidities. Results: A total of 1,789 individuals with COPD from SPIROMICS had data on hemoglobin, and of these 7.5% (n = 135) were found to have normocytic anemia. Anemic participants were older with worse airflow obstruction, a higher proportion of them were African Americans, and they had a higher burden of cardiac and metabolic comorbidities. Anemia was strongly associated with 6-minute walk distance (b, 261.43; 95% confidence interval [CI], 285.11 to 237.75), modified Medical Research Council dyspnea questionnaire (b, 0.27; 95% CI, 0.11-0.44), and St. George's Respiratory Questionnaire (b, 3.90; 95% CI, 1.09-6.71), and these adjusted associations were stronger among those with two or more cardiac and metabolic comorbidities. Anemia was associated with higher levels of serum C-reactive protein, soluble receptor for advanced glycosylation endproducts, and epithelial cadherin-1, findings that persisted when in those with a high burden of comorbidities. Conclusions: Anemia is associated with worse exercise capacity, greater dyspnea, and greater disease severity among adults with COPD, particularly among those with comorbid chronic cardiac and metabolic diseases. The biomarkers found in anemic individuals suggest inflammation, lung tissue injury, and oxidative stress as possible pathways for the adverse correlations of anemia with outcomes in COPD; however, substantial further study is required to better understand these potential mechanisms

    The mechanisms of the formation of metal-containing nanoparticles

    No full text
    corecore