10 research outputs found

    Is Body Fat a Predictor of Race Time in Female Long-Distance Inline Skaters?

    Get PDF
    Purpose: The aim of this study was to evaluate predictor variables of race time in female ultra-endurance inliners in the longest inline race in Europe. Methods: We investigated the association between anthropometric and training characteristics and race time for 16 female ultraendurance inline skaters, at the longest inline marathon in Europe, the ‘Inline One-eleven’ over 111 km in Switzerland, using bi- and multivariate analysis. Results: The mean (SD) race time was 289.7 (54.6) min. The bivariate analysis showed that body height (r=0.61), length of leg (r=0.61), number of weekly inline skating training sessions (r=-0.51)and duration of each training unit (r=0.61) were significantly correlated with race time. Stepwise multiple regressions revealed that body height, duration of each training unit, and age were the best variables to predict race time. Conclusion: Race time in ultra-endurance inline races such as the ‘Inline One-eleven’ over 111 km might be predicted by the following equation (r2 = 0.65): Race time (min) = -691.62 + 521.71 (body height, m) + 0.58 (duration of each training unit, min) + 1.78 (age, yrs) for female ultra-endurance inline skaters

    The effect of cold water endurance swimming on core temperature in aspiring English Channel swimmers

    No full text
    Background: The purpose of this study was to determine if cold water swimmers (CWS) developed hypothermia over a 6-h cold water endurance swim and whether body composition, stroke rate (SR) or personal characteristics correlated with core temperature (TC) change. Nine experienced male and female CWS who were aspiring English Channel (EC) swimmers volunteered to participate. Subjects aimed to complete their 6-h EC qualifying swim (water 15–15.8 °C/air 15–25 °C) while researchers intermittently monitored TC and SR. Data obtained included anthropom‑ etry (height, mass, segmental body composition), training volume and EC completion. Results: Of the nine swimmers who volunteered, all successfully completed their EC qualifying swim. Six CWS had complete data included in analysis. One CWS demonstrated hypothermia (34.8 °C) at 6-h. TC rate of decline was slower in the first 3 h (−0.06 °C/hr) compared to the last 3 h (−0.36 °C/hr) of the swim. Older age was significantly correlated to TC change (r = −0.901, p \u3c 0.05) and SR change (r = −0.915, p \u3c 0.05). Absolute and percentage body fat (BF) were not significantly associated with higher TC. Mean SR over the 6-h swim was 57.8 spm (range 48–73 spm), and a significant (p \u3c 0.05) decline in SR was observed over the 6 h (−9.7 %). A strong, positive correlation was found between SR change between 3 and 6 h and TC over the 6 h (r = 0.840, p \u3c 0.05) and TC from 3–6 h (r = 0.827, p \u3c 0.05). Seven of the nine participants (77.8 %) in this study successfully completed the EC crossing. Successful EC swimmers swam in the pool and open water (OW); however, they swam significantly [t (7) = −2.433, p \u3c 0.05] more kilometres (M = 19.09 km/wk ± 5.55) in OW than unsuccessful (M = 9 km/wk ± 1.41) EC swimmers. There was a significant relationship between EC crossing time and height (r = −0.817, p \u3c 0.05), but no other variables and EC crossing time. Conclusions: Cold water endurance swim (CWES) of 6-h duration at 15–16 °C resulted in TC reduction in the majority of swimmers regardless of anthropometry. More research is required to determine why some CWS are able to main‑ tain their TC throughout a CWES. Our results indicate that older swimmers are at greater risk of developing hypother‑ mia, and that SR decline is an indicator of TC decline. Our results also suggest that OW swimming training combined with pool training is important for EC swim success

    Tumours

    No full text

    Gene Therapy for the Nervous System: Challenges and New Strategies

    No full text

    Genitourinary Pathology (Including Adrenal Gland)

    No full text
    Our aims in constructing the Genitourinary Pathology chapter are to describe neoplasms of the adrenal gland, urothelial tract, kidney, penis, prostate, and testis in a manner that is both useful for the practicing surgical pathologist and that may be used as a reference for all students of urologic pathology. Whereas the text and figures describe the salient morphologic, immunohistochemical, and molecular attributes for each tumor type and encompass the latest classification schemes, the narrative integrates the clinical and pathological findings that are commonly encountered during surgical pathology sign-out of these cases. Accordingly, it is our hope that this chapter will serve as a guide for both general and subspecialized pathologists in contemporary practice
    corecore