317 research outputs found

    Structural Calculations for a Medical Clinic in the Dominican Republic with Mission TwentyFive35

    Get PDF
    Located in the northern region of the Dominican Republic, Rural Resilience is a clinic situated on a vocational campus in the rural town of Via Tapia. In collaboration with the Amoveo Group, Mission TwentyFive35 initiated the design and construction of this vocational campus to address the community’s limited access to healthcare and education, clean water, food, and the lack of vocational job training. Planned to be completed in several phases, this campus aims as a means to solve these shortcomings. This project provides the structural calculations and drawings for the clinic within Mission TwentyFive35’s campus. In coordination with the non profit humanitarian organization Journeyman International, an architecture student was paired with a construction management student and an architectural engineering student to design the building, which will be reviewed by an in-country engineer before construction may begin

    Vehicle Exhaust Remote Sensing Device Method to Screen Vehicles for Evaporative Running Loss Emissions

    Get PDF
    Vehicle hydrocarbon (HC) emissions can be emitted from either tailpipe or non-tailpipe locations and understanding their fleet apportionment is important for successful air pollution policy. Vehicles initially misidentified as having elevated tailpipe HC emissions first indicated that roadside exhaust sensors could detect the presence of evaporative HC emissions as increased noise in the HC/carbon dioxide (CO2) correlation measurement. The 90th percentile of the largest residual of the HC/CO2 correlation is defined as a running loss index (RLI) for each measurement. An RLI that is three standard deviations or greater above the instruments noise indicates possible evaporative running loss emissions with the probability increasing with larger RLI values. Two databases of vehicle emission measurements previously collected in West Los Angeles in 2013 and 2015 were screened using this method. The screening estimated 0.09% (31/33,806) and 0.18% (49/27,413) of the attempted measurements indicated evaporative running loss emissions from a 9-year-old fleet. California LEV I certified vehicles (1994 – 2003 model years) accounted for the largest age group for both. Minimum detection limits for the instrument used were estimated at 2.8 and 1.6 g/mile on a propane basis for the 2013 and 2015 data respectively or 32 to 56 times the Federal Tier 2 and Tier 3 standards of 0.05 g/mile

    Anomalous Drude Model

    Full text link
    A generalization of the Drude model is studied. On the one hand, the free motion of the particles is allowed to be sub- or superdiffusive; on the other hand, the distribution of the time delay between collisions is allowed to have a long tail and even a non-vanishing first moment. The collision averaged motion is either regular diffusive or L\'evy-flight like. The anomalous diffusion coefficients show complex scaling laws. The conductivity can be calculated in the diffusive regime. The model is of interest for the phenomenological study of electronic transport in quasicrystals.Comment: 4 pages, latex, 2 figures, to be published in Physical Review Letter

    Matrix controlled channel diffusion of sodium in amorphous silica

    Full text link
    To find the origin of the diffusion channels observed in sodium-silicate glasses, we have performed classical molecular dynamics simulations of Na2_2O--4SiO2_2 during which the mass of the Si and O atoms has been multiplied by a tuning coefficient. We observe that the channels disappear and that the diffusive motion of the sodium atoms vanishes if this coefficient is larger than a threshold value. Above this threshold the vibrational states of the matrix are not compatible with those of the sodium ions. We interpret hence the decrease of the diffusion by the absence of resonance conditions.Comment: 5 pages, 4 figure

    Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study

    Full text link
    The origin of the non-exponential relaxation of silver ions in the crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate two-time and three-time 109Ag NMR correlation functions. The non-exponentiality is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an intrinsic non-exponentiality. Thus, the data give no evidence for the relevance of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure

    Channel diffusion of sodium in a silicate glass

    Full text link
    We use classical molecular dynamics simulations to study the dynamics of sodium atoms in amorphous Na2_2O-4SiO2_2. We find that the sodium trajectories form a well connected network of pockets and channels. Inside these channels the motion of the atoms is not cooperative but rather given by independent thermally activated hops of individual atoms between the pockets. By determining the probability that an atom returns to a given starting site, we show that such events are not important for the dynamics of this system.Comment: 10 pages of Latex, 5 figures, one figure added, text expande

    Metastable Dynamics above the Glass Transition

    Full text link
    The element of metastability is incorporated in the fluctuating nonlinear hydrodynamic description of the mode coupling theory (MCT) of the liquid-glass transition. This is achieved through the introduction of the defect density variable nn into the set of slow variables with the mass density ρ\rho and the momentum density g{\bf g}. As a first approximation, we consider the case where motions associated with nn are much slower than those associated with ρ\rho. Self-consistently, assuming one is near a critical surface in the MCT sense, we find that the observed slowing down of the dynamics corresponds to a certain limit of a very shallow metastable well and a weak coupling between ρ\rho and nn. The metastability parameters as well as the exponents describing the observed sequence of time relaxations are given as smooth functions of the temperature without any evidence for a special temperature. We then investigate the case where the defect dynamics is included. We find that the slowing down of the dynamics corresponds to the system arranging itself such that the kinetic coefficient γv\gamma_v governing the diffusion of the defects approaches from above a small temperature-dependent value γvc\gamma^c_v.Comment: 38 pages, 14 figures (6 figs. are included as a uuencoded tar- compressed file. The rest is available upon request.), RevTEX3.0+eps

    Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion

    Full text link
    Performing molecular dynamics simulations for all-atom models, we characterize the conformational and structural relaxations of poly(ethylene oxide) and poly(propylene oxide) melts. The temperature dependence of these relaxation processes deviates from an Arrhenius law for both polymers. We demonstrate that mode-coupling theory captures some aspects of the glassy slowdown, but it does not enable a complete explanation of the dynamical behavior. When the temperature is decreased, spatially heterogeneous and cooperative translational dynamics are found to become more important for the structural relaxation. Moreover, the transitions between the conformational states cease to obey Poisson statistics. In particular, we show that, at sufficiently low temperatures, correlated forward-backward motion is an important aspect of the conformational relaxation, leading to strongly nonexponential distributions for the waiting times of the dihedrals in the various conformational statesComment: 13 pages, 13 figure

    Hopping Transport in the Presence of Site Energy Disorder: Temperature and Concentration Scaling of Conductivity Spectra

    Full text link
    Recent measurements on ion conducting glasses have revealed that conductivity spectra for various temperatures and ionic concentrations can be superimposed onto a common master curve by an appropriate rescaling of the conductivity and frequency. In order to understand the origin of the observed scaling behavior, we investigate by Monte Carlo simulations the diffusion of particles in a lattice with site energy disorder for a wide range of both temperatures and concentrations. While the model can account for the changes in ionic activation energies upon changing the concentration, it in general yields conductivity spectra that exhibit no scaling behavior. However, for typical concentrations and sufficiently low temperatures, a fairly good data collapse is obtained analogous to that found in experiment.Comment: 6 pages, 4 figure

    Broadband Dielectric Spectroscopy on Glass-Forming Propylene Carbonate

    Full text link
    Dielectric spectroscopy covering more than 18 decades of frequency has been performed on propylene carbonate in its liquid and supercooled-liquid state. Using quasi-optic submillimeter and far-infrared spectroscopy the dielectric response was investigated up to frequencies well into the microscopic regime. We discuss the alpha-process whose characteristic timescale is observed over 14 decades of frequency and the excess wing showing up at frequencies some three decades above the peak frequency. Special attention is given to the high-frequency response of the dielectric loss in the crossover regime between alpha-peak and boson-peak. Similar to our previous results in other glass forming materials we find evidence for additional processes in the crossover regime. However, significant differences concerning the spectral form at high frequencies are found. We compare our results to the susceptibilities obtained from light scattering and to the predictions of various models of the glass transition.Comment: 13 pages, 9 figures, submitted to Phys. Rev.
    corecore