21 research outputs found

    Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking

    Get PDF
    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data

    Clinical and Translational Considerations for Understanding Depression and Anxiety in Patients with Inflammatory Bowel Disease

    No full text
    Depression and anxiety are comorbidities of inflammatory bowel disease (IBD). Though previous studies have proposed a relationship between anxiety, depression, and IBD, causality and directionality are largely unknown. Current and future research in these areas is aimed at exploring the biological underpinnings of this relationship, specifically pertaining to small molecule metabolism, such as tryptophan. Tryptophan is acquired through the diet and is the precursor to several vital bioactive metabolites including the hormone melatonin, the neurotransmitter serotonin, and vitamin B3. In this review, we discuss previous findings relating mental health comorbidities with IBD and underline ongoing research of tryptophan catabolite analysis

    <i>Limosilactobacillus reuteri</i> normalizes blood–brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide

    No full text
    Maternal immune activation (MIA) derived from late gestational infection such as seen in chorioamnionitis poses a significantly increased risk for neurodevelopmental deficits in the offspring. Manipulating early microbiota through maternal probiotic supplementation has been shown to be an effective means to improve outcomes; however, the mechanisms remain unclear. In this study, we demonstrated that MIA modeled by exposing pregnant dams to lipopolysaccharide (LPS) induced an underdevelopment of the blood vessels, an increase in permeability and astrogliosis of the blood–brain barrier (BBB) at prewean age. The BBB developmental and functional deficits early in life impaired spatial learning later in life. Maternal Limosilactobacillus reuteri (L. reuteri) supplementation starting at birth rescued the BBB underdevelopment and dysfunction-associated cognitive function. Maternal L. reuteri-mediated alterations in β-diversity of the microbial community and metabolic responses in the offspring provide mechanisms and potential targets for promoting BBB integrity and long-term neurodevelopmental outcomes

    Distinct Energy-Coupling Factor Transporter Subunits Enable Flavin Acquisition and Extracytosolic Trafficking for Extracellular Electron Transfer in Listeria monocytogenes

    No full text
    ABSTRACT A variety of electron transfer mechanisms link bacterial cytosolic electron pools with functionally diverse redox activities in the cell envelope and extracellular space. In Listeria monocytogenes, the ApbE-like enzyme FmnB catalyzes extracytosolic protein flavinylation, covalently linking a flavin cofactor to proteins that transfer electrons to extracellular acceptors. L. monocytogenes uses an energy-coupling factor (ECF) transporter complex that contains distinct substrate-binding, transmembrane, ATPase A, and ATPase A′ subunits (RibU, EcfT, EcfA, and EcfA′) to import environmental flavins, but the basis of extracytosolic flavin trafficking for FmnB flavinylation remains poorly defined. In this study, we show that the EetB and FmnA proteins are related to ECF transporter substrate-binding and transmembrane subunits, respectively, and are essential for exporting flavins from the cytosol for flavinylation. Comparisons of the flavin import versus export capabilities of L. monocytogenes strains lacking different ECF transporter subunits demonstrate a strict directionality of substrate-binding subunit transport but partial functional redundancy of transmembrane and ATPase subunits. Based on these results, we propose that ECF transporter complexes with different subunit compositions execute directional flavin import/export through a broadly conserved mechanism. Finally, we present genomic context analyses that show that related ECF exporter genes are distributed across members of the phylum Firmicutes and frequently colocalize with genes encoding flavinylated extracytosolic proteins. These findings clarify the basis of ECF transporter export and extracytosolic flavin cofactor trafficking in Firmicutes. IMPORTANCE Bacteria import vitamins and other essential compounds from their surroundings but also traffic related compounds from the cytosol to the cell envelope where they serve various functions. Studying the foodborne pathogen Listeria monocytogenes, we find that the modular use of subunits from a prominent class of bacterial transporters enables the import of environmental vitamin B2 cofactors and the extracytosolic trafficking of a vitamin B2-derived cofactor that facilitates redox reactions in the cell envelope. These studies clarify the basis of bidirectional small-molecule transport across the cytoplasmic membrane and the assembly of redox-active proteins within the cell envelope and extracellular space

    Distinct energy-coupling factor transporter subunits enable flavin acquisition and extracytosolic trafficking for extracellular electron transfer in listeria monocytogenes

    No full text
    International audienceA variety of electron transfer mechanisms link bacterial cytosolic electron pools with functionally diverse redox activities in the cell envelope and extracellular space. In Listeria monocytogenes, the ApbE-like enzyme FmnB catalyzes extracytosolic protein flavinylation, covalently linking a flavin cofactor to proteins that transfer electrons to extracellular acceptors. L. monocytogenes uses an energy-coupling factor (ECF) transporter complex that contains distinct substrate-binding, transmembrane, ATPase A, and ATPase A′ subunits (RibU, EcfT, EcfA, and EcfA′) to import environmental flavins, but the basis of extracytosolic flavin trafficking for FmnB flavinylation remains poorly defined. In this study, we show that the EetB and FmnA proteins are related to ECF transporter substrate-binding and transmembrane subunits, respectively, and are essential for exporting flavins from the cytosol for flavinylation. Comparisons of the flavin import versus export capabilities of L. monocytogenes strains lacking different ECF transporter subunits demonstrate a strict directionality of substrate-binding subunit transport but partial functional redundancy of transmembrane and ATPase subunits. Based on these results, we propose that ECF transporter complexes with different subunit compositions execute directional flavin import/export through a broadly conserved mechanism. Finally, we present genomic context analyses that show that related ECF exporter genes are distributed across members of the phylum Firmicutes and frequently colocalize with genes encoding flavinylated extracytosolic proteins. These findings clarify the basis of ECF transporter export and extracytosolic flavin cofactor trafficking in Firmicutes

    Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization

    No full text
    Summary: To understand how a bacterium ultimately succeeds or fails in adapting to a new host, it is essential to assess the temporal dynamics of its fitness over the course of colonization. Here, we introduce a human-derived commensal organism, Bacteroides thetaiotaomicron (Bt), into the guts of germ-free mice to determine whether and how the genetic requirements for colonization shift over time. Combining a high-throughput functional genetics assay and transcriptomics, we find that gene usage changes drastically during the first days of colonization, shifting from high expression of amino acid biosynthesis genes to broad upregulation of diverse polysaccharide utilization loci. Within the first week, metabolism becomes centered around utilization of a predominant dietary oligosaccharide, and these changes are largely sustained through 6 weeks of colonization. Spontaneous mutations in wild-type Bt also evolve around this locus. These findings highlight the importance of considering temporal colonization dynamics in developing more effective microbiome-based therapies

    Fecal metabolite profiling identifies liver transplant recipients at risk for postoperative infection

    No full text
    Metabolites produced by the intestinal microbiome modulate mucosal immune defenses and optimize epithelial barrier function. Intestinal dysbiosis, including loss of intestinal microbiome diversity and expansion of antibiotic-resistant pathobionts, is accompanied by changes in fecal metabolite concentrations and increased incidence of systemic infection. Laboratory tests that quantify intestinal dysbiosis, however, have yet to be incorporated into clinical practice. We quantified fecal metabolites in 107 patients undergoing liver transplantation (LT) and correlated these with fecal microbiome compositions, pathobiont expansion, and postoperative infections. Consistent with experimental studies implicating microbiome-derived metabolites with host-mediated antimicrobial defenses, reduced fecal concentrations of short- and branched-chain fatty acids, secondary bile acids, and tryptophan metabolites correlate with compositional microbiome dysbiosis in LT patients and the relative risk of postoperative infection. Our findings demonstrate that fecal metabolite profiling can identify LT patients at increased risk of postoperative infection and may provide guideposts for microbiome-targeted therapies
    corecore