623 research outputs found

    Are Targets for Renewable Portfolio Standards Too Low? The Impact of Market Structure on Energy Policy

    Get PDF
    In order to limit climate change from greenhouse gas emissions, governments have introduced renewable portfolio standards (RPS) to incentivise renewable energy production. While the response of industry to exogenous RPS targets has been addressed in the literature, setting RPS targets from a policymaker’s perspective has remained an open question. Using a bi-level model, we prove that the optimal RPS target for a perfectly competitive electricity industry is higher than that for a benchmark centrally planned one. Allowing for market power by the non-renewable energy sector within a deregulated industry lowers the RPS target vis-à-vis perfect competition. Moreover, to our surprise, social welfare under perfect competition with RPS is lower than that when the non-renewable energy sector exercises market power. In effect, by subsidising renewable energy and taxing the non-renewable sector, RPS represents an economic distortion that over-compensates damage from emissions. Thus, perfect competition with RPS results in “too much” renewable energy output, whereas the market power of the non-renewable energy sector mitigates this distortion, albeit at the cost of lower consumer surplus and higher emissions. Hence, ignoring the interaction between RPS requirements and the market structure could lead to sub-optimal RPS targets and substantial welfare losses

    Investing in Time-to-Build Projects With Uncertain Revenues and Costs: A Real Options Approach

    Get PDF
    Lagging public-sector investment in infrastructure and the deregulation of many industries mean that the private sector has to make decisions under multiple sources of uncertainty. We analyze such investment decisions by accounting for both multiple sources of uncertainty and the time-to-build aspect. The latter feature arises in the energy and transportation sectors, because investors can decide the rate at which the project is completed. Furthermore, two explicit sources of uncertainty represent the discounted cash inflows and outflows of the completed project. We use a finite-difference scheme to solve numerically the option value and the optimal investment threshold. Somewhat counterintuitively, with a relatively long time to build, a reduction in the growth rate of the discounted operating cost may actually lower the investment threshold. This is contrary to the outcome when the stepwise aspect is ignored in a model with uncertain price and cost. Hence, research and development efforts to enhance emerging technologies may be more relevant for infrastructure projects with long lead times

    Tradable Performance-Based CO2 Emissions Standards: Walking on Thin Ice?

    Get PDF
    Climate policy, like climate change itself, is subject to debate. Partially due to the political deadlock in Washington, DC, US climate policy, historically, has been driven mainly by state or regional effort until the recently introduced federal Clean Power Plan (CPP). Instead of a traditional mass-based standard, the US CPP stipulates a state-specific performance-based CO2 emission standard and delegates considerable flexibility to the states in achieving the standard. Typically, there are two sets of policy tools available: a tradable performance-based and a mass-based permit program. We analyze these two related but distinct standards when they are subject to imperfect competition in the product and/or permit markets. Stylized models are developed to produce general conclusions. Detailed models that account for heterogenous technologies and the transmission network are developed to evaluate policy efficiency. Depending on the scenarios under consideration, the resulting problem could be either a complementarity problem or a Stackelberg leaderfollower game, which is implemented as a mathematical program with equilibrium constraints (MPEC). We overcome the nonconvexity of MPECs by reformulating them as mixed integer problems. We show that while the cross-subsidy inherent in the performance-based standard that might effectively reduce power prices, it could inflate energy demand, thereby rendering permits scarce. When the leader in a Stackelberg formulation has a relatively clean endowment under the performancebased standard, its ability to manipulate the electricity market as well as to lower permit prices might worsen the market outcomes compared to its mass-based counterpart. On the other hand, when the leader has a relatively dirty endowment, the "cross-subsidy" could be the dominant force leading to a higher social welfare compared to the mass-based program. This paper contributes to the current policy debates in regulating emissions from the US power sector and highlights different incentives created by the mass- and performance-based standards

    How Much Is Enough? Optimal Support Payments in a Renewable-Rich Power System

    Get PDF
    The large-scale deployment of intermittent renewable energy sources may cause substantial power imbalance. Together with the transmission grid congestion caused by the remoteness of these sources from load centers, this creates a need for fast-adjusting conventional capacity such as gas-fired plants. However, these plants have become unprofitable because of lower power prices due to the zero marginal costs of renewables. Consequently, policymakers are proposing new measures for mitigating balancing costs and securing supply. In this paper, we take the perspective of the regulator to assess the effectiveness of support payments to flexible generators. Using data on the German power system, we implement a bi-level programming model, which shows that such payments for gas-fired plants in southern Germany reduce balancing costs and can be used as part of policy to integrate renewable energy

    Energy-Efficient Building Retrofits: An Assessment of Regulatory Proposals under Uncertainty

    Get PDF
    Improving energy efficiency in European Union buildings will require retrofitting much of the existing stock due to limited new construction opportunities. Given uncertainty in energy prices and technology costs stemming from deregulation, a stochastic optimisation framework is desirable for long-term decision support. We synthesise treatment of uncertainty and risk management to obtain insights about the impact of retrofits on energy consumption, costs, CO2 emissions, and risk at real buildings in Austria and Spain. The optimal strategy for the Spanish site is to invest in photovoltaic and solar thermal technologies. This lowers expected costs by 8.5% and reduces expected primary energy consumption and CO2 emissions by 20% relative to using existing equipment. By limiting exposure to volatile energy prices, the strategy also yields a nearly 10% reduction in risk. We obtain similar results also for the Austrian site. Via this framework, tradeoffs among competing objectives and the effectiveness of proposed regulation may be assessed. Specifically, we find that more stringent restrictions on energy efficiency are economically viable if regulation also facilitates enhanced operational decision support for buildings. Indeed, primary energy consumption can be lowered only through more on-site generation such as combined heat and power, which is more complex for building managers to deploy

    Regulatory jurisdiction and policy coordination: A bi-level modeling approach for performance-based environmental policy

    Get PDF
    This study discusses important aspects of policy modeling based on a leader-follower game of policymakers. We specifically investigate non-cooperation between policymakers and the jurisdictional scope of regulation via bi-level programming. Performance-based environmental policy under the Clean Power Plan in the United States is chosen for our analysis. We argue that the cooperation of policymakers is welfare enhancing. Somewhat counterintuitively, full coordination among policymakers renders performance-based environmental policy redundant. We also find that distinct state-by-state regulation yields higher social welfare than broader regional regulation. This is because power producers can participate in a single power market even under state-by-state environmental regulation and arbitrage away the CO2 price differences by adjusting their generation across states. Numerical examples implemented for a stylized test network illustrate the theoretical findings

    Wasserstein-distance-based temporal clustering for capacity-expansion planning in power systems

    Get PDF
    As variable renewable energy sources are steadily incorporated in European power systems, the need for higher temporal resolution in capacity-expansion models also increases.Naturally, there exists a trade-off between the amount of temporal data used to plan power systems for decades ahead and time resolution needed to represent renewable energy variability accurately. We propose the use of the Wasserstein distance as a measure of cluster discrepancy using it to cluster demand, wind availability, and solar availability data. When compared to the Euclidean distance and the maximal distance, the hierarchical clustering performed using the Wasserstein distance leads to capacity-expansion planning that 1) more accurately estimates system costs and 2) more efficiently adopts storage resources. Numerical results indicate an improvement in cost estimation by up to 5% vis-Ă -vis the Euclidean distance and a reduction of storage investment that is equivalent to nearly 100% of the installed capacity under the benchmark full time resolution

    Strategic storage use in a hydro-thermal power system with carbon constraints

    Get PDF
    Several interconnected power systems worldwide have largely thermal and hydro production along with CO_{2} cap-and-trade (C&T) systems and variable renewable energy sources (VRES). C&T policies increase VRES generation, and socially optimal storage deployment could integrate VRES output. However, hydro reservoirs may be used strategically due to market power. We investigate these distortions and assess measures for their mitigation via a bottom-up equilibrium model of New York and Québec. In particular, we find evidence that hydro producers shift water between seasons to manipulate electricity prices even under a net-hydro production constraint. Alternative regulation covering net imports as well as net-hydro production limits such temporal arbitrage but enables firms with both thermal generation and pumped-hydro storage to exercise spatial arbitrage. We demonstrate that these distortions will be exacerbated under more stringent C&T policies because price-taking thermal producers are less able to respond to price signals

    Optimal Operation of Combined Heat and Power under Uncertainty and Risk Aversion

    Get PDF
    Despite the proven benefits of combined heat and power (CHP) and recently introduced subsidies to support it, CHP adoption has not met its targets. One of the possible reasons for this is risk from uncertain electricity and gas prices. To gain insights into the risk management of a CHP unit, we develop a multi-stage stochastic mean-risk optimisation model for the medium-term management of a distributed generation system with a gas-fired microturbine with heat recovery and a boiler. The model adopts the perspective of a large consumer that procures gas (for on-site generation) and electricity (for consumption) on the spot and futures markets. The consumer's risk aversion is incorporated into the model through the conditional value-at-risk (CVaR) measure. We show that CHP not only decreases the consumer's expected cost and risk exposure by 10% each but also improves expected energy efficiency by 4 percentage points and decreases expected CO2 emissions by 16%. The risk exposure can be further mitigated through the use of financial contracts

    Market Power with Combined Heat and Power Production in the Nordic Energy System

    Get PDF
    The trend toward increasing energy efficiency and variable renewable energy (VRE) production has implications for combined heat and power (CHP) plants, which operate in both the price-driven power market and the district heating (DH) sector. Since CHP will be important in VRE integration, we develop a complementarity model to analyze CHP producers' roles in integrated markets. We use a Nordic case study to gain insights into (i) the effect of the link between CHP and DH on market power and (ii) market power's impact on operations in the DH sector. The results indicate that (i) the link of CHP to DH supply can increase market power and (ii) market power can induce shifts in DH production from heat-only to CHP
    • …
    corecore