16 research outputs found

    The asymmetry of sunspot cycles and Waldmeier relations as due to nonlinear surface-shear shaped dynamo

    Full text link
    The paper presents a study of a solar dynamo model operating in the bulk of the convection zone with the toroidal magnetic field flux concentrated in the subsurface rotational shear layer. We explore how this type of dynamo may depend on spatial variations of turbulent parameters and on the differential rotation near the surface. The mean-field dynamo model takes into account the evolution of magnetic helicity and describes its nonlinear feedback on the generation of large-scale magnetic field by the α\alpha-effect. We compare the magnetic cycle characteristics predicted by the model, including the cycle asymmetry (associated with the growth and decay times) and the duration - amplitude relation (Waldmeier's effects), with the observed sunspot cycle properties. We show that the model qualitatively reproduces the basic properties of the solar cycles.Comment: 28 pages, 7 figures(Second revision, figures updates

    Scaler mode of the Auger Observatory and Sunspots

    Get PDF
    Recent data from the Auger Observatory on low energy secondary cosmic ray particles are analyzed to study temporal correlations together with data on the daily sunspot numbers and neutron monitor data. Standard spectral analysis demonstrates that the available data shows 1/f^{\beta} fluctuations with {\beta} approximately 1 in the low frequency range. All data behave like Brownian fluctuations in the high frequency range. The existence of long-range correlations in the data was confirmed by detrended fluctuation analysis. The real data confirmed the correlation between the scaling exponent of the detrended analysis and the exponent of the spectral analysis.Comment: 20 pages, 6 figures, to be published in Astrophysical Journal Supplement Serie

    Polar Field Reversal Observations with Hinode

    Full text link
    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard {\it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (101510^{15} -- 102010^{20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches (≥1018 \geq 10^{18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<1018 < 10^{18} Mx) and that of the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap

    The evolution of plasma parameters on a coronal source surface at 2.3 Rs during solar minimum

    Full text link
    We analyze data from the Solar and Heliospheric Observatory to produce global maps of coronal outflow velocities and densities in the regions where the solar wind is undergoing acceleration. The maps use UV and white light coronal data obtained from the Ultraviolet Coronagraph Spectrometer and the Large Angle Spectroscopic Coronagraph, respectively, and a Doppler dimming analysis to determine the mean outflow velocities. The outflow velocities are defined on a sphere at 2.3 Rs from Sun-center and are organized by Carrington Rotations during the solar minimum period at the start of solar cycle 23. We use the outflow velocity and density maps to show that while the solar minimum corona is relatively stable during its early stages, the shrinkage of the north polar hole in the later stages leads to changes in both the global areal expansion of the coronal hole and the derived internal flux tube expansion factors of the solar wind. The polar hole areal expansion factor and the flux tube expansion factors (between the coronal base and 2.3 Rs) start out as super-radial but then they become more nearly radial as the corona progresses away from solar minimum. The results also support the idea that the largest flux tube expansion factors are located near the coronal hole/streamer interface, at least during the deepest part of the solar minimum period.Comment: 12 Figures, Accepted for publication in Ap
    corecore