6 research outputs found

    Optical spectroscopy of tungsten carbide (WC)

    Get PDF
    Journal ArticleResonant two-photon ionization spectroscopy has been used to study the diatomic transition-metal carbide, WC. A low-resolution scan revealed a five-member vibrational progression beginning with the 0-0 band at 17 585 cm-1. Analysis of this progression yielded a vibrational frequency of ?'e8(184W12C)=752.6(4.9) cm-1 and a bond length of r'e8(184W12C)=1.747(4) ?. Several unassigned bands were also rotationally resolved and analyzed. All of the observed bands are ?'=2??"=1 transitions, confirming the predicted ground state of 3?1 arising from a 14??8rr?15??4?116?1 configuration. The measured line positions in these bands were simultaneously fitted to provide B"=0.509 66(10) cm-1 for 184W12C, corresponding to r"0(184W12C)=1.713 5(2) ?. These values are corrected for spin-uncoupling effects in the ground state and represent our best estimate of the true bond length of WC. Dispersed fluorescence studies provide the ground-state vibrational constants of ?e=983(4) cm-1 and ?exe=11(1) cm-1, and have also permitted the low-lying [1.2] 3?2 and [4.75] states to be located and characterized. These results on WC are discussed in relation to the isovalent molecule MoC and other transition-metal carbides

    Fluorescence measurements for evaluating the application of multivariate analysis techniques to optically thick environments.

    Get PDF
    Laser-induced fluorescence measurements of cuvette-contained laser dye mixtures are made for evaluation of multivariate analysis techniques to optically thick environments. Nine mixtures of Coumarin 500 and Rhodamine 610 are analyzed, as well as the pure dyes. For each sample, the cuvette is positioned on a two-axis translation stage to allow the interrogation at different spatial locations, allowing the examination of both primary (absorption of the laser light) and secondary (absorption of the fluorescence) inner filter effects. In addition to these expected inner filter effects, we find evidence that a portion of the absorbed fluorescence is re-emitted. A total of 688 spectra are acquired for the evaluation of multivariate analysis approaches to account for nonlinear effects

    Functional antibody immobilization on 3-dimensional polymeric surfaces generated by reactive ion etching

    No full text
    Reactive ion etching (RIE) was used to pattern antibodies onto the surfaces of polymer substrates. A low pressure, inductively coupled oxygen plasma was used to anisotropically etch 25-30 μm deep features into poly(methyl methacrylate) (PMMA), Zeonex, and polycarbonate (PC). Scanning electron microscopy and contact angle measurements show that the resulting surfaces exhibit significant microroughness and enhanced hydrophilicity. Fourier transform infrared spectroscopy suggests that, in addition to enhanced surface area, chemical modifications may contribute to antibody immobilization. Polyclonal antibodies preferentially bind to the etched areas in RIE-patterned PMMA and Zeonex substrates but localize in unetched regions of RIE-patterned PC surfaces. Simple immunoassays were performed to demonstrate a potential application for RIE-modified polymer surfaces. Antibodies specific for the capture of fluorescently labeled cholera toxin, S. aureus enterotoxin B, and B. anthracis protective antigen were immobilized onto etched PMMA surfaces and shown to specifically capture their labeled antigen from solution. This work demonstrates a potentially useful fabrication methodology for constructing antibody microarrays on plastic substrates

    Injection molded microfluidic devices for biological sample separation and detection

    No full text
    We are developing a variety of microsystems for the separation and detection of biological samples. At the heart of these systems, inexpensive polymer microfluidic chips carry out sample preparation and analysis. Fabrication of polymer microfluidic chips involves the creation of a master in etched silicon or glass; plating of the master to produce a nickel stamp; large lot chip replication by injection molding; precision chip sealing; and chemical modification of channel surfaces. Separation chips rely on insulator-based dielectrophoresis for the separation of biological particles. Detection chips carry out capillary electrophoresis to detect fluorescent tags that identify specific biological samples. Since the performance and reliability of these microfluidic chips are very sensitive to fluidic impedance, electromagnetic flux, and zeta potential, the microchannel dimensions, shape, and surface chemistry have to be tightly controlled during chip fabrication and use. This paper will present an overview of chip design, fabrication, and testing. Dimensional metrology data, surface chemistry characterization, and chip performance data will be discussed in detail
    corecore