1,301 research outputs found

    A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE

    Full text link
    The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented

    PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic Occupancy Prediction

    Full text link
    Semantic segmentation in autonomous driving has been undergoing an evolution from sparse point segmentation to dense voxel segmentation, where the objective is to predict the semantic occupancy of each voxel in the concerned 3D space. The dense nature of the prediction space has rendered existing efficient 2D-projection-based methods (e.g., bird's eye view, range view, etc.) ineffective, as they can only describe a subspace of the 3D scene. To address this, we propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively and a PointOcc model to process them efficiently. Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system for more fine-grained modeling of nearer areas. We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane. Finally, we obtain the features of each point by aggregating its projected features on each of the processed TPV planes without the need for any post-processing. Extensive experiments on both 3D occupancy prediction and LiDAR segmentation benchmarks demonstrate that the proposed PointOcc achieves state-of-the-art performance with much faster speed. Specifically, despite only using LiDAR, PointOcc significantly outperforms all other methods, including multi-modal methods, with a large margin on the OpenOccupancy benchmark. Code: https://github.com/wzzheng/PointOcc.Comment: Code is available at https://github.com/wzzheng/PointOc

    On the Possibilities of AI-Generated Text Detection

    Full text link
    Our work focuses on the challenge of detecting outputs generated by Large Language Models (LLMs) from those generated by humans. The ability to distinguish between the two is of utmost importance in numerous applications. However, the possibility and impossibility of such discernment have been subjects of debate within the community. Therefore, a central question is whether we can detect AI-generated text and, if so, when. In this work, we provide evidence that it should almost always be possible to detect the AI-generated text unless the distributions of human and machine generated texts are exactly the same over the entire support. This observation follows from the standard results in information theory and relies on the fact that if the machine text is becoming more like a human, we need more samples to detect it. We derive a precise sample complexity bound of AI-generated text detection, which tells how many samples are needed to detect. This gives rise to additional challenges of designing more complicated detectors that take in n samples to detect than just one, which is the scope of future research on this topic. Our empirical evaluations support our claim about the existence of better detectors demonstrating that AI-Generated text detection should be achievable in the majority of scenarios. Our results emphasize the importance of continued research in this are

    More Context, Less Distraction: Visual Classification by Inferring and Conditioning on Contextual Attributes

    Full text link
    CLIP, as a foundational vision language model, is widely used in zero-shot image classification due to its ability to understand various visual concepts and natural language descriptions. However, how to fully leverage CLIP's unprecedented human-like understanding capabilities to achieve better zero-shot classification is still an open question. This paper draws inspiration from the human visual perception process: a modern neuroscience view suggests that in classifying an object, humans first infer its class-independent attributes (e.g., background and orientation) which help separate the foreground object from the background, and then make decisions based on this information. Inspired by this, we observe that providing CLIP with contextual attributes improves zero-shot classification and mitigates reliance on spurious features. We also observe that CLIP itself can reasonably infer the attributes from an image. With these observations, we propose a training-free, two-step zero-shot classification method named PerceptionCLIP. Given an image, it first infers contextual attributes (e.g., background) and then performs object classification conditioning on them. Our experiments show that PerceptionCLIP achieves better generalization, group robustness, and better interpretability. For example, PerceptionCLIP with ViT-L/14 improves the worst group accuracy by 16.5% on the Waterbirds dataset and by 3.5% on CelebA

    Dexterous In-Hand Manipulation of Slender Cylindrical Objects through Deep Reinforcement Learning with Tactile Sensing

    Full text link
    Continuous in-hand manipulation is an important physical interaction skill, where tactile sensing provides indispensable contact information to enable dexterous manipulation of small objects. This work proposed a framework for end-to-end policy learning with tactile feedback and sim-to-real transfer, which achieved fine in-hand manipulation that controls the pose of a thin cylindrical object, such as a long stick, to track various continuous trajectories through multiple contacts of three fingertips of a dexterous robot hand with tactile sensor arrays. We estimated the central contact position between the stick and each fingertip from the high-dimensional tactile information and showed that the learned policies achieved effective manipulation performance with the processed tactile feedback. The policies were trained with deep reinforcement learning in simulation and successfully transferred to real-world experiments, using coordinated model calibration and domain randomization. We evaluated the effectiveness of tactile information via comparative studies and validated the sim-to-real performance through real-world experiments.Comment: 10 pages, 12 figures, submitted to Transaction on Mechatronic

    The roles of NOP56 in cancer and SCA36

    Get PDF
    NOP56 is a highly conserved nucleolar protein. Amplification of the intron GGCCTG hexanucleotide repeat sequence of the NOP56 gene results in spinal cerebellar ataxia type 36 (SCA36). NOP56 contains an N-terminal domain, a coiled-coil domain, and a C-terminal domain. Nucleolar protein NOP56 is significantly abnormally expressed in a number of malignant tumors, and its mechanism is different in different tumors, but its regulatory mechanism in most tumors has not been fully explored. NOP56 promotes tumorigenesis in some cancers and inhibits tumorigenesis in others. In addition, NOP56 is associated with methylation in some tumors, suggesting that NOP56 has the potential to become a tumor-specific marker. This review focuses on the structure, function, related signaling pathways, and role of NOP56 in the progression of various malignancies, and discusses the progression of NOP56 in neurodegenerative and other diseases

    Computational Emotion Analysis From Images: Recent Advances and Future Directions

    Full text link
    Emotions are usually evoked in humans by images. Recently, extensive research efforts have been dedicated to understanding the emotions of images. In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective with the focus on summarizing recent advances and suggesting future directions. We begin with commonly used emotion representation models from psychology. We then define the key computational problems that the researchers have been trying to solve and provide supervised frameworks that are generally used for different IEA tasks. After the introduction of major challenges in IEA, we present some representative methods on emotion feature extraction, supervised classifier learning, and domain adaptation. Furthermore, we introduce available datasets for evaluation and summarize some main results. Finally, we discuss some open questions and future directions that researchers can pursue.Comment: Accepted chapter in the book "Human Perception of Visual Information Psychological and Computational Perspective
    corecore