6 research outputs found

    Drosophila phosphopantothenoylcysteine synthetase is required for tissue morphogenesis during oogenesis

    Get PDF
    Background: Coenzyme A (CoA) is an essential metabolite, synthesized from vitamin B5 by the subsequent action of five enzymes: PANK, PPCS, PPCDC, PPAT and DPCK. Mutations in Drosophila dPPCS disrupt female fecundity and in this study we analyzed the female sterile phenotype of dPPCS mutants in detail. Results: We demonstrate that dPPCS is required for various processes that occur during oogenesis including chorion patterning. Our analysis demonstrates that a mutation in dPPCS disrupts the organization of the somatic and germ line cells, affects F-actin organization and results in abnormal PtdIns(4,5)P2 localization. Improper cell organization coincides with aberrant localization of the membrane molecules Gurken (Grk) and Notch, whose activities are required for specification of the follicle cells that pattern the eggshell. Mutations in dPPCS also induce alterations in scutellar patterning and cause wing vein abnormalities. Interestingly, mutations in dPANK and dPPAT-DPCK result in similar patterning defects. Conclusion: Together, our results demonstrate that de novo CoA biosynthesis is required for proper tissue morphogenesis

    CoA-dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases

    Get PDF
    PKAN, CoPAN, MePAN, and PDH-E2 deficiency share key phenotypic features but harbor defects in distinct metabolic processes. Selective damage to the globus pallidus occurs in these genetic neurodegenerative diseases, which arise from defects in CoA biosynthesis (PKAN, CoPAN), protein lipoylation (MePAN), and pyruvate dehydrogenase activity (PDH-E2 deficiency). Overlap of their clinical features suggests a common molecular etiology, the identification of which is required to understand their pathophysiology and design treatment strategies. We provide evidence that CoA-dependent activation of mitochondrial acyl carrier protein (mtACP) is a possible process linking these diseases through its effect on PDH activity. CoA is the source for the 4 '-phosphopantetheine moiety required for the posttranslational 4 '-phosphopantetheinylation needed to activate specific proteins. We show that impaired CoA homeostasis leads to decreased 4 '-phosphopantetheinylation of mtACP. This results in a decrease of the active form of mtACP, and in turn a decrease in lipoylation with reduced activity of lipoylated proteins, including PDH. Defects in the steps of a linked CoA-mtACP-PDH pathway cause similar phenotypic abnormalities. By chemically and genetically re-activating PDH, these phenotypes can be rescued, suggesting possible treatment strategies for these diseases

    <it>Drosophila </it>phosphopantothenoylcysteine synthetase is required for tissue morphogenesis during oogenesis

    No full text
    Abstract Background Coenzyme A (CoA) is an essential metabolite, synthesized from vitamin B5 by the subsequent action of five enzymes: PANK, PPCS, PPCDC, PPAT and DPCK. Mutations in Drosophila dPPCS disrupt female fecundity and in this study we analyzed the female sterile phenotype of dPPCS mutants in detail. Results We demonstrate that dPPCS is required for various processes that occur during oogenesis including chorion patterning. Our analysis demonstrates that a mutation in dPPCS disrupts the organization of the somatic and germ line cells, affects F-actin organization and results in abnormal PtdIns(4,5)P2 localization. Improper cell organization coincides with aberrant localization of the membrane molecules Gurken (Grk) and Notch, whose activities are required for specification of the follicle cells that pattern the eggshell. Mutations in dPPCS also induce alterations in scutellar patterning and cause wing vein abnormalities. Interestingly, mutations in dPANK and dPPAT-DPCK result in similar patterning defects. Conclusion Together, our results demonstrate that de novo CoA biosynthesis is required for proper tissue morphogenesis.</p

    Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility

    Get PDF
    The VPS13A gene is associated with the neurodegenerative disorder Chorea Acanthocytosis. It is unknown what the consequences are of impaired function of VPS13A at the subcellular level. We demonstrate that VPS13A is a peripheral membrane protein, associated with mitochondria, the endoplasmic reticulum and lipid droplets. VPS13A is localized at sites where the endoplasmic reticulum and mitochondria are in close contact. VPS13A interacts with the ER residing protein VAP-A via its FFAT domain. Interaction with mitochondria is mediated via its C-terminal domain. In VPS13A-depleted cells, ER-mitochondria contact sites are decreased, mitochondria are fragmented and mitophagy is decreased. VPS13A also localizes to lipid droplets and affects lipid droplet motility. In VPS13A-depleted mammalian cells lipid droplet numbers are increased. Our data, together with recently published data from others, indicate that VPS13A is required for establishing membrane contact sites between various organelles to enable lipid transfer required for mitochondria and lipid droplet related processes
    corecore