81 research outputs found

    Flexible, textronic temperature sensors, based on carbon nanostructures

    Get PDF
    The paper presents a comparative analysis of two types of flexible temperature sensors, made of carbon-based nanostructures composites. These sensors were fabricated by a low-cost screen-printing method, which qualifies them to large scale, portable consumer electronic products. Results of examined measurements show the possibility of application for thick film devices, especially dedicated to wearable electronics, also known as a textronics. Apart from general characterisation, the influence of technological processes on specific sensor parameters were examined, particulary the value of the temperature coefficient of resistance (TCR) and its stability during the device bending

    An evaluation of the posterior cruciate ligament function in total knee arthroplasty with regard to its morphology and clinical properties

    Get PDF
    The aim of the study was to determine the degree of posterior cruciate ligament (PCL) degeneration and the reduction in the number of its mechanoreceptors, in patients with advanced degenerative joint disease. PCLs taken from study group of 50 patients in the mean age of 70.7 (53–84) years with a diagnosis of advanced idiopathic osteoarthritis undergoing condylar total knee arthroplasty were compared to those taken form the control group of 10 knee joints of cadavers. Groups were matched with regard to sex and age. Histological examination of PCLs of the study group showed changes of an inflammatory process and no significant signs of osteoarthritis in the control group. A close correlation was found between the severity of degenerative changes on the X-ray images according to the Ahlbäck scale, and the increased mucoid degeneration (p < 0.0001), the severity of the degeneration of the collagen structure (p < 0.0001) and the presence of proprioceptors of PCLs (p < 0.0001). Conserving the PCL by the use of type cruciate retaining knee arthroplasty does not guarantee the preservation of correct proprioceptive sensation

    A quantitative study of the arrangement of the suprascapular nerve and vessels in the suprascapular notch region: new findings based on parametric analysis

    Get PDF
    Background: When closed by the superior transverse scapular ligament (STSL), the suprascapular notch (SSN) creates an osseo-fibrous tunnel which acts as a pathway for the suprascapular nerve (SN). Anatomical variations are common in this region, and these can increase the risk of neuropathy by restricting the space for nerve passage. The aim of this study is to identify any correlation between the area reduction coefficient parameters and the SN and vessel arrangements in the SSN region. Material and methods: The SSN region was dissected in 88 formalin-fixed cadaveric shoulders (40 left and 48 right). During dissection, the topography of the SN, artery and vein was evaluated. Quantitative visual data analysis software was used to measure the areas of the STSL and the anterior coracoscapular ligament (ACSL), as well as the diameters of the SN and associated vessels, and to assign those structures to existing classifications. The area reduction coefficient (ARC) was calculated for each shoulder. Results: The area of the STSL (aSTSL) and ACSL (aACSL) were significantly larger in Type IV than Type I of the triad. Similarly, the aSTSL and area of the SSN (aSSN) were found to be significantly larger in Type IV than Type III. However, no significant differences were found in the ARC of the STSL (ARCSTSL), the ARC of the ACSL (ARCACSL) or the total ARC (ARCtotal). Conclusions: Although the aSTSL, aACSL and aSSN varied according to the type of SN and vessel arrangement, coefficient analysis (ARCSTSL, ARCACSL and ARCtotal) indicated that combined effect of these variations did not significantly affect SSN morphology.

    The use of photovoltaic installations in order to improve the energy independency of a dairy equipped with a biogas reactor

    No full text
    This article attempts to demonstrate the importance of photovoltaic installations in improving the energy independence of a dairy equipped with a biogas reactor. It focuses on the development of photovoltaic technologies towards the wider use of solar cells in industrial power engineering installations, the potential of photovoltaic installations in Poland, and the storage and processing of energy from photovoltaic sources. An attempt has also been made to analyze the potential of a milk processing plant to meet its energy needs using photovoltaic sources

    Review of Luminescence-Based Light Spectrum Modifications Methods and Materials for Photovoltaics Applications

    No full text
    The dynamic development of photovoltaic and photo-sensitive electronic devices is constantly stimulated by material and technological advances. One of the key concepts that is highly recommended for the enhancement of these device parameters is the modification of the insulation spectrum. Practical implementation of this idea, although difficult, may be highly beneficial for photoconversion efficiency, photosensitivity range extension, and their cost reduction. The article presents a wide range of practical experiments leading to the manufacturing of functional photoconverting layers, dedicated to low-cost and wide-scale deposition methods. Various active agents, based on different luminescence effects as well as the possible organic carrier matrixes, substrate preparation and treatment procedures, are presented. New innovative materials, based on their quantum effects, are examined. The obtained results are discussed in terms of the application in new generation photovoltaics and other optoelectronic elements

    ZnO layers in application as TCL for new generation of solar cells

    No full text
    W ciągu ostatnich lat fotowoltaika wkroczyła na drogę bardzo dynamicznego rozwoju co przekłada się na gwałtowny wzrost wielkości produkcji ogniw słonecznych. Jednocześnie rosnący procent rynku stanowią cienkowarstwowe przyrządy nowej generacji o niskiej cenie i elastycznej konstrukcji. Do pełnego wykorzystania ich zalet w tym potencjalnej elastyczności struktury konieczna jest adaptacja odpowiednich transparentnych warstw przewodzących TCL (ang: Transparent Conductive Layers). Do grupy materiałów o potencjalnych korzystnych właściwościach z punktu wykorzystania w roli elektrody transparentnej należą odmiany tlenku cynku. Prezentowana praca jest poświęcona badaniom właściwości cienkich warstw ZnO:Al wytworzonych metodą PLD (ang: Pulsed Laser Deposition) do zastosowań w charterze transparentnej elektrody przewodzącej elastycznych, cienkowarstwowych ogniw słonecznych. Opis technologii wytwarzania jest uzupełniony o wszechstronną analizę parametrów mechanicznych i optoelektronicznych uzyskanych warstw na podłożach elastycznych i sztywnych. Zaprezentowane są modele numeryczne prototypowych konstrukcji ogniw. Przedstawione są również pierwsze wyniki pomiarów eksperymentalnej konstrukcji ogniwa słonecznego wyposażonego w otrzymaną warstwę.Rapid development of photovoltaics, which may be recently observed, is transferred to a mass-production scale of PV industry. At the same time constant growth of inexpensive thin-film, flexible devices leads to their significant share in the PV market. However, the potential profits of thin film applications are limited by proper technology and materials adaptation. Important element for most of these devices is a transparent electrode made of appropriate Transparent Conductive Layer (TCL). This paper is dedicated to practical investigation of ZnO:Al layer prepared by Pulsed Laser Deposition (PLD) technology as the emitter electrode of thin film solar cells. The production technology description is detailed and supplemented by mechanical and opto-electrical parameters measurements and simulations. Described layer is prepared and examined on traditional and transparent flexible substrates as well. The concepts and first realization of the new cell structure are given

    Renewable energy electric sources as a support for multilevel cellular communication networks in various environment conditions : case study

    No full text
    Cellular mobile communication networks are experiencing an important evolution with the emerging deployment of 5G networks and the successive decline in the use of previous generations in the years to come. In parallel, policies promoting ecological transition are gaining social impact and economic interest and this seems to be the trend in the near future. In the telecommunications market, the shift between two dominant generations could be an important opportunity to introduce renewable energy sources to green the sector, reducing the carbon footprint of the world-wide extended activity. This work analyses the current situation and provides an insight into the possibilities to incorporate renewable energy supplies, specifically photovoltaics (as it seems to be the most promising among clean electric sources), perhaps combined with small wind turbines in off-grid systems. Paper also compares the characteristics of standard facilities in Spain and Poland, two different European countries in terms of weather and insolation hours
    corecore