131 research outputs found
Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum–plasma membrane contact sites
Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum–plasma membrane (ER–PM) contact sites in leaf and root cells. The ER–PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER–PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER–PM contact sites. The VAP27-1-enriched ER–PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER–PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER–PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs
Katanin-Dependent Microtubule Ordering in Association with ABA Is Important for Root Hydrotropism
Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water
Application of Plasticity Theory to Reinforced Concrete Deep Beams
yesThis paper reviews the application of the plasticity theory to reinforced concrete deep beams. Both the truss analogy and mechanism approach were employed to predict the capacity of reinforced concrete deep beams. In addition, most current codes of practice, for example Eurocode 1992 and ACI 318-05, recommend the strut-and-tie model for designing reinforced concrete deep beams.
Compared with methods based on empirical or semi-empirical equations, the strut-and-tie model and mechanism analyses are more rational, adequately accurate and sufficiently simple for estimating the load capacity of reinforced concrete deep beams. However, there is a problem of selecting the effectiveness factor of concrete as reflected in the wide range of values reported in the literature for deep beams
Neural network modelling of RC deep beam shear strength
YesA 9 x 18 x 1 feed-forward neural network (NN) model
trained using a resilient back-propagation algorithm and
early stopping technique is constructed to predict the
shear strength of deep reinforced concrete beams. The
input layer covering geometrical and material properties
of deep beams has nine neurons, and the corresponding output is the shear strength. Training, validation and testing of the developed neural network have been
achieved using a comprehensive database compiled from
362 simple and 71 continuous deep beam specimens.
The shear strength predictions of deep beams obtained
from the developed NN are in better agreement with
test results than those determined from strut-and-tie
models. The mean and standard deviation of the ratio between predicted capacities using the NN and measured shear capacities are 1.028 and 0.154, respectively, for simple deep beams, and 1.0 and 0.122, respectively, for continuous deep beams. In addition, the
trends ascertained from parametric study using the developed NN have a consistent agreement with those observed in other experimental and analytical investigations
"From the moment i wake up i will use it?every day, very hour": A qualitative study on the patterns of adolescents' mobile touch screen device use from adolescent and parent perspectives
Background: The use of mobile touch screen devices, e.g. smartphones and tablet computers, has become increasingly prevalent among adolescents. However, little is known about how adolescents use these devices and potential influences on their use. Hence, this qualitative study explored adolescents' perceptions on their patterns of use and factors influencing use, and perceptions and concerns from parents. Methods: Semi-structured interviews were conducted with adolescents (n = 36; 11 to 18 years) and their parents/caregivers (n = 28) in Singapore recruited to represent males and females across a range of ages from different socioeconomic groups. Prompts covered weekday and weekend use patterns, types of activities, perspectives on amount of use, parental control measures and concerns. Interviews were recorded and transcribed. Transcripts were coded and thematic analysis was carried out. Results: Smartphone was the most common mobile device owned and used by many of the adolescents, while only some used a tablet. Many adolescents and their parents felt that adolescents' MTSD use was high, frequent and ubiquitous, with frequent checking of device and multitasking during use. Reported influences of use included functional, personal and external influences. Some of the influences were irresistibility of mobile devices, lack of self-control, entertainment or relaxation value, and high use by peers, family and for schoolwork that contributed to high use, or school/parental control measures and lack of internet availability that limited use. Most adolescents were generally unconcerned about their use and perceived their usage as appropriate, while most parents expressed several concerns about their adolescents' use and perceived their usage as excessive. Conclusions: This study has provided rich insights into the patterns and influences of contemporary mobile device use by adolescents. Mobile device use has become an integral part of adolescents' daily routines, and was affected by several functional, personal and external influences which either facilitated or limited their use. There also seemed to be a strong inclination for adolescents to frequently check and use their mobile devices. There is an urgent need to understand the implications of these common adolescent behaviours to inform advice for wise mobile device use by adolescents
Tuftsin Promotes an Anti-Inflammatory Switch and Attenuates Symptoms in Experimental Autoimmune Encephalomyelitis
Multiple sclerosis (MS) is a demyelinating autoimmune disease mediated by infiltration of T cells into the central nervous system after compromise of the blood-brain barrier. We have previously shown that administration of tuftsin, a macrophage/microglial activator, dramatically improves the clinical course of experimental autoimmune encephalomyelitis (EAE), a well-established animal model for MS. Tuftsin administration correlates with upregulation of the immunosuppressive Helper-2 Tcell (Th2) cytokine transcription factor GATA-3. We now show that tuftsin-mediated microglial activation results in shifting microglia to an anti-inflammatory phenotype. Moreover, the T cell phenotype is shifted towards immunoprotection after exposure to tuftsin-treated activated microglia; specifically, downregulation of pro-inflammatory Th1 responses is triggered in conjunction with upregulation of Th2-specific responses and expansion of immunosuppressive regulatory T cells (Tregs). Finally, tuftsin-shifted T cells, delivered into animals via adoptive transfer, reverse the pathology observed in mice with established EAE. Taken together, our findings demonstrate that tuftsin decreases the proinflammatory environment of EAE and may represent a therapeutic opportunity for treatment of MS
- …