3 research outputs found

    Rethinking gradient weights' influence over saliency map estimation

    Full text link
    Class activation map (CAM) helps to formulate saliency maps that aid in interpreting the deep neural network's prediction. Gradient-based methods are generally faster than other branches of vision interpretability and independent of human guidance. The performance of CAM-like studies depends on the governing model's layer response, and the influences of the gradients. Typical gradient-oriented CAM studies rely on weighted aggregation for saliency map estimation by projecting the gradient maps into single weight values, which may lead to over generalized saliency map. To address this issue, we use a global guidance map to rectify the weighted aggregation operation during saliency estimation, where resultant interpretations are comparatively clean er and instance-specific. We obtain the global guidance map by performing elementwise multiplication between the feature maps and their corresponding gradient maps. To validate our study, we compare the proposed study with eight different saliency visualizers. In addition, we use seven commonly used evaluation metrics for quantitative comparison. The proposed scheme achieves significant improvement over the test images from the ImageNet, MS-COCO 14, and PASCAL VOC 2012 datasets

    Denoising single images by feature ensemble revisited

    Full text link
    Image denoising is still a challenging issue in many computer vision sub-domains. Recent studies show that significant improvements are made possible in a supervised setting. However, few challenges, such as spatial fidelity and cartoon-like smoothing remain unresolved or decisively overlooked. Our study proposes a simple yet efficient architecture for the denoising problem that addresses the aforementioned issues. The proposed architecture revisits the concept of modular concatenation instead of long and deeper cascaded connections, to recover a cleaner approximation of the given image. We find that different modules can capture versatile representations, and concatenated representation creates a richer subspace for low-level image restoration. The proposed architecture's number of parameters remains smaller than the number for most of the previous networks and still achieves significant improvements over the current state-of-the-art networks

    Rethinking Gradient Weight’s Influence over Saliency Map Estimation

    No full text
    Class activation map (CAM) helps to formulate saliency maps that aid in interpreting the deep neural network’s prediction. Gradient-based methods are generally faster than other branches of vision interpretability and independent of human guidance. The performance of CAM-like studies depends on the governing model’s layer response and the influences of the gradients. Typical gradient-oriented CAM studies rely on weighted aggregation for saliency map estimation by projecting the gradient maps into single-weight values, which may lead to an over-generalized saliency map. To address this issue, we use a global guidance map to rectify the weighted aggregation operation during saliency estimation, where resultant interpretations are comparatively cleaner and instance-specific. We obtain the global guidance map by performing elementwise multiplication between the feature maps and their corresponding gradient maps. To validate our study, we compare the proposed study with nine different saliency visualizers. In addition, we use seven commonly used evaluation metrics for quantitative comparison. The proposed scheme achieves significant improvement over the test images from the ImageNet, MS-COCO 14, and PASCAL VOC 2012 datasets
    corecore