663 research outputs found

    Probing two driven double quantum dots strongly coupled to a cavity

    Full text link
    We experimentally and theoretically study a driven hybrid circuit quantum electrodynamics (cQED) system beyond the dispersive coupling regime. Treating the cavity as part of the driven system, we develop a theory applicable to such strongly coupled and to multi-qubit systems. The fringes measured for a single driven double quantum dot (DQD)-cavity setting and the enlarged splittings of the hybrid Floquet states in the presence of a second DQD are well reproduced with our model. This opens a path to study Floquet states of multi-qubit systems with arbitrarily strong coupling and reveals a new perspective for understanding strongly driven hybrid systems.Comment: 9 pages, 6 figure

    Tunable Coupling Architectures with Capacitively Connecting Pads for Large-Scale Superconducting Multi-Qubit Processors

    Full text link
    We have proposed and experimentally verified a tunable inter-qubit coupling scheme for large-scale integration of superconducting qubits. The key feature of the scheme is the insertion of connecting pads between qubit and tunable coupling element. In such a way, the distance between two qubits can be increased considerably to a few millimeters, leaving enough space for arranging control lines, readout resonators and other necessary structures. The increased inter-qubit distance provides more wiring space for flip-chip process and reduces crosstalk between qubits and from control lines to qubits. We use the term Tunable Coupler with Capacitively Connecting Pad (TCCP) to name the tunable coupling part that consists of a transmon coupler and capacitively connecting pads. With the different placement of connecting pads, different TCCP architectures can be realized. We have designed and fabricated a few multi-qubit devices in which TCCP is used for coupling. The measured results show that the performance of the qubits coupled by the TCCP, such as T1T_1 and T2T_2, was similar to that of the traditional transmon qubits without TCCP. Meanwhile, our TCCP also exhibited a wide tunable range of the effective coupling strength and a low residual ZZ interaction between the qubits by properly tuning the parameters on the design. Finally, we successfully implemented an adiabatic CZ gate with TCCP. Furthermore, by introducing TCCP, we also discuss the realization of the flip-chip process and tunable coupling qubits between different chips.Comment: Main text: 7 pages, 6 figure

    Towards a global One Health index: a potential assessment tool for One Health performance

    Get PDF
    BACKGROUND: A One Health approach has been increasingly mainstreamed by the international community, as it provides for holistic thinking in recognizing the close links and inter-dependence of the health of humans, animals and the environment. However, the dearth of real-world evidence has hampered application of a One Health approach in shaping policies and practice. This study proposes the development of a potential evaluation tool for One Health performance, in order to contribute to the scientific measurement of One Health approach and the identification of gaps where One Health capacity building is most urgently needed. METHODS: We describe five steps towards a global One Health index (GOHI), including (i) framework formulation; (ii) indicator selection; (iii) database building; (iv) weight determination; and (v) GOHI scores calculation. A cell-like framework for GOHI is proposed, which comprises an external drivers index (EDI), an intrinsic drivers index (IDI) and a core drivers index (CDI). We construct the indicator scheme for GOHI based on this framework after multiple rounds of panel discussions with our expert advisory committee. A fuzzy analytical hierarchy process is adopted to determine the weights for each of the indicators. RESULTS: The weighted indicator scheme of GOHI comprises three first-level indicators, 13 second-level indicators, and 57 third-level indicators. According to the pilot analysis based on the data from more than 200 countries/territories the GOHI scores overall are far from ideal (the highest score of 65.0 out of a maximum score of 100), and we found considerable variations among different countries/territories (31.8–65.0). The results from the pilot analysis are consistent with the results from a literature review, which suggests that a GOHI as a potential tool for the assessment of One Health performance might be feasible. CONCLUSIONS: GOHI—subject to rigorous validation—would represent the world’s first evaluation tool that constructs the conceptual framework from a holistic perspective of One Health. Future application of GOHI might promote a common understanding of a strong One Health approach and provide reference for promoting effective measures to strengthen One Health capacity building. With further adaptations under various scenarios, GOHI, along with its technical protocols and databases, will be updated regularly to address current technical limitations, and capture new knowledge. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40249-022-00979-9
    • …
    corecore