244 research outputs found

    Primordial Gravitational Waves Measurements and Anisotropies of CMB Polarization Rotation

    Full text link
    Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several foreground issues, such as the thermal dust emission. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recent polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio rr by considering the polarization rotation angle which can be separated into a background isotropic part and a small anisotropic part. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the "self-calibration" method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including the anisotropies in the analysis could slightly weaken the constraints on rr, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle can not be taken into account properly in the analysis, the constraints on rr will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational waves accurately.Comment: 7 pages, 5 figure

    Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation

    Full text link
    We propose Speculative Decoding (SpecDec), for the first time ever, to formally study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding. Speculative Decoding has two innovations: Spec-Drafter -- an independent model specially optimized for efficient and accurate drafting -- and Spec-Verification -- a reliable method for verifying the drafted tokens efficiently in the decoding paradigm. Experimental results on various seq2seq tasks including machine translation and abstractive summarization show our approach can achieve around 5×5\times speedup for the popular Transformer architectures with comparable generation quality to beam search decoding, refreshing the impression that the draft-then-verify paradigm introduces only 1.4×1.4\times∼\sim2×2\times speedup. In addition to the remarkable speedup, we also demonstrate 3 additional advantages of SpecDec, revealing its practical value for accelerating generative models in real-world applications. Our models and codes are available at https://github.com/hemingkx/SpecDec.Comment: v1-v4\textbf{v1-v4} (Early 2022): Initially announced with the name "Generalized Aggressive Decoding"; v5\textbf{v5} (September 2022): Renamed to "Speculative Decoding" as the ICLR'23 submission (https://openreview.net/pdf?id=H-VlwsYvVi), marking the first time\textbf{the first time} "Speculative Decoding" has been publicly proposed. v6\textbf{v6}: EMNLP'23 Findings camera read

    Lensing reconstruction from the cosmic microwave background polarization with machine learning

    Full text link
    The lensing effect of the cosmic microwave background (CMB) is a powerful tool for our study of the distribution of matter in the universe. Currently, the quadratic estimator (EQ) method, which is widely used to reconstruct lensing potential, has been known to be sub-optimal for the low-noise levels polarization data from next-generation CMB experiments. To improve the performance of the reconstruction, other methods, such as the maximum likelihood estimator and machine learning algorithms are developed. In this work, we present a deep convolutional neural network model named the Residual Dense Local Feature U-net (RDLFUnet) for reconstructing the CMB lensing convergence field. By simulating lensed CMB data with different noise levels to train and test network models, we find that for noise levels less than 5μ5\muK-arcmin, RDLFUnet can recover the input gravitational potential with a higher signal-to-noise ratio than the previous deep learning and the traditional QE methods at almost the entire observation scales.Comment: 12 pages, 8 figures, accepted by Ap

    Extensible Prompts for Language Models on Zero-shot Language Style Customization

    Full text link
    We propose eXtensible Prompt (X-Prompt) for prompting a large language model (LLM) beyond natural language (NL). X-Prompt instructs an LLM with not only NL but also an extensible vocabulary of imaginary words. Registering new imaginary words allows us to instruct the LLM to comprehend concepts that are difficult to describe with NL words, thereby making a prompt more descriptive. Also, these imaginary words are designed to be out-of-distribution (OOD) robust so that they can be (re)used like NL words in various prompts, distinguishing X-Prompt from soft prompt that is for fitting in-distribution data. We propose context-augmented learning (CAL) to learn imaginary words for general usability, enabling them to work properly in OOD (unseen) prompts. We experiment X-Prompt for zero-shot language style customization as a case study. The promising results of X-Prompt demonstrate its potential to facilitate advanced interaction beyond the natural language interface, bridging the communication gap between humans and LLMs.Comment: Accepted by NeurIPS 202

    Recovering the CMB Signal with Machine Learning

    Full text link
    The cosmic microwave background (CMB), carrying the inhomogeneous information of the very early universe, is of great significance for understanding the origin and evolution of our universe. However, observational CMB maps contain serious foreground contaminations from several sources, such as galactic synchrotron and thermal dust emissions. Here, we build a deep convolutional neural network (CNN) to recover the tiny CMB signal from various huge foreground contaminations. Focusing on the CMB temperature fluctuations, we find that the CNN model can successfully recover the CMB temperature maps with high accuracy, and that the deviation of the recovered power spectrum Câ„“C_\ell is smaller than the cosmic variance at â„“>10\ell>10. We then apply this method to the current Planck observation, and find that the recovered CMB is quite consistent with that disclosed by the Planck collaboration, which indicates that the CNN method can provide a promising approach to the component separation of CMB observations. Furthermore, we test the CNN method with simulated CMB polarization maps based on the CMB-S4 experiment. The result shows that both the EE and BB power spectra can be recovered with high accuracy. Therefore, this method will be helpful for the detection of primordial gravitational waves in current and future CMB experiments. The CNN is designed to analyze two-dimensional images, thus this method is not only able to process full-sky maps, but also partial-sky maps. Therefore, it can also be used for other similar experiments, such as radio surveys like the Square Kilometer Array.Comment: 19 pages, 25 figures, and 3 tables, ApJS, in press. The code repository is available at https://github.com/Guo-Jian-Wang/cmbNNC
    • …
    corecore