2,906 research outputs found
QCD corrections to single slepton production at hadron colliders
We evaluate the cross section for single slepton production at hadron
colliders in supersymmetric theories with R-parity violating interactions to
the next-to-leading order in QCD. We obtain fully differential cross section by
using the phase space slicing method. We also perform soft-gluon resummation to
all order in of leading logarithm to obtain a complete transverse
momentum spectrum of the slepton. We find that the full transverse momentum
spectrum is peaked at a few GeV, consistent with the early results for
Drell-Yan production of lepton pairs. We also consider the contribution from
gluon fusion via quark-triangle loop diagrams dominated by the -quark loop.
The cross section of this process is significantly smaller than that of the
tree-level process induced by the initial annihilation.Comment: one new reference is adde
miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level
<p>Abstract</p> <p>Background</p> <p>miR-15a and miR-16-1(miR-15a/16-1) have been implicated as tumor suppressors in chronic lymphocytic leukemia, multiple myeloma, and acute myeloid leukemic cells. However the mechanism of inhibiting the proliferation of leukemic cells is poorly understood.</p> <p>Methods</p> <p>K562 and HL-60 cells were transfected with pRS-15/16 or pRS-E, cell growth were measured by CCK-8 assay and direct cell count. Meanwhile WT1 protein and mRNA level were measured by Western blotting and quantitative real-time PCR.</p> <p>Results</p> <p>In this study we found that over-expression of miR-15a/16-1 significantly inhibited K562 and HL-60 cells proliferation. Enforced expression of miR-15a/16-1 in K562 and HL-60 cells significantly reduced the protein level of WT1 but not affected the mRNA level. However enforced expression of miR-15a/16-1 can not reduce the activity of a luciferase reporter carrying the 3'-untranslated region(3'UTR) of WT1. Silencing of WT1 by specific siRNA suppressed leukemic cells proliferation resembling that of miR-15a/16-1 over-expression. Anti-miR-15a/16-1 oligonucleotides (AMO) reversed the expression of WT1 in K562 and HL-60 cells. Finally, we found a significant inverse correlation between miR-15a or miR-16-1 expression and WT1 protein levels in primary acute myeloid leukemia (AML) blasts and normal controls.</p> <p>Conclusions</p> <p>These data suggest that miR-15a/16-1 may function as a tumor suppressor to regulate leukemic cell proliferation potentially by down-regulating the WT1 oncogene. However WT1 is not directly targeted by miR-15a/16-1 through miRNA-mRNA base pairing, therefore more study are required to understand the mechanism by which miR-15a/16-1 downregulate WT1.</p
Protective Effects of Peroxisome Proliferator-Activated Receptor-α Agonist, Wy14643, on Hypoxia/Reoxygenation Injury in Primary Rat Hepatocytes
This study investigates the effects and possible mechanism of an agonist of PPARα, Wy14643, on primary hepatocytes subjected to H/R injury in rats. H/R induced a significant increase ALT, AST, MDA in the culture medium and ROS in the hepatocytes. These effects were reversed by pretreatment with Wy14643 in the dose-dependent manner. The activity of SOD and the level of GSH in the hepatocytes were decreased after H/R, which were increased by Wy14643 pretreatment. Moreover, the mRNA expressions of PPARα significantly increased in H/R+Wy14643 groups when compared with that in H/R group. A PPARα agonist, Wy14643, exerts significant protective effect against H/R injury in primary hepatocytes via PPARα activation and attenuating oxidative stress
Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters
Spatial modes have received substantial attention over the last decades and are used in optical communication applications. In fiber-optic communications, the employed linearly polarized modes and phase vortex modes carrying orbital angular momentum can be synthesized by fiber vector eigenmodes. To improve the transmission capacity and miniaturize the communication system, straightforward fiber vector eigenmode multiplexing and generation of fiber-eigenmode-like polarization vortices (vector vortex modes) using photonic integrated devices are of substantial interest. Here, we propose and demonstrate direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. By exploiting vector vortex modes (radially and azimuthally polarized beams) generated from silicon microring resonators etched with angular gratings, we report data-carrying fiber vector eigenmode multiplexing transmission through a 2-km large-core fiber, showing low-level mode crosstalk and favorable link performance. These demonstrations may open up added capacity scaling opportunities by directly accessing multiple vector eigenmodes in the fiber and provide compact solutions to replace bulky diffractive optical elements for generating various optical vector beams
Measurement-device-independent quantum key distribution over untrustful metropolitan network
Quantum cryptography holds the promise to establish an
information-theoretically secure global network. All field tests of
metropolitan-scale quantum networks to date are based on trusted relays. The
security critically relies on the accountability of the trusted relays, which
will break down if the relay is dishonest or compromised. Here, we construct a
measurement-device-independent quantum key distribution (MDIQKD) network in a
star topology over a 200 square kilometers metropolitan area, which is secure
against untrustful relays and against all detection attacks. In the field test,
our system continuously runs through one week with a secure key rate ten times
larger than previous result. Our results demonstrate that the MDIQKD network,
combining the best of both worlds --- security and practicality, constitutes an
appealing solution to secure metropolitan communications.Comment: 17 pages, 4 figure
Lead contamination alters enzyme activities and microbial composition in the rhizosphere soil of the hyperaccumulator Pogonatherum crinitum
Pogonatherum crinitum is a promising lead (Pb) hyperaccumulator; however, the effects of Pb contamination on P. crinitum rhizosphere soil enzymatic activities and microbial composition remain largely unexplored. Thus, an indoor experiment was conducted by cultivating P. crinitum seedlings and exposing them to four Pb concentrations (0, 1,000, 2000 and 3000 mg/kg Pb). Protease, urease, acid phosphatase and invertase activities were determined using standard methods while soil bacterial composition was determined by 16 S rDNA sequencing. The results showed that rhizosphere soil acid phosphatase activity significantly increased with increasing Pb concentration, while urease activity was significantly greater in rhizosphere soil contaminated with 1000 and 2000 mg/kg than in the control. There was a clear shift in bacterial composition during phytoremediation by P. crinitum. Compared to the control, Bacteroidetes was more abundant in all Pb-contaminated soils, Actinobacteria was more abundant in 1000 mg/kg Pb-treated soil, and Firmicutes was more abundant in 3000 mg/kg Pb-treated soil. Positive correlations were observed between dominant bacterial phyla and soil enzyme activities. Metabolic pathways, such as ABC transporter, quinine reductase, and ATP-binding protein were significantly increased in rhizosphere soil bacteria with Pb contamination. In conclusion, Pb contamination differentially influenced the activities of rhizosphere soil enzymes, specifically increasing acid phosphatase and urease activities, and alters the dominance of soil bacteria through up-regulation of genes related to some metabolic pathways. The strong correlations between dominant bacterial phyla and enzymatic activities suggest synergetic effects on the growth of P. crinitum during Pb contamination
- …