230 research outputs found

    Diaqua­bis(5-carb­oxy-2-methyl-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)cobalt(II) dimethyl­formamide disolvate

    Get PDF
    In the title compound, [Co(C6H5N2O4)2(H2O)2]·2C3H7NO, the CoII ion lies on an inversion center and adopts a slightly distorted CoN2O4 octa­hedral geometry binding two bidentate chelating 5-carb­oxy-2-methyl-1H-imidazole-4-carboxyl­ate (H2MIDA−) monoanionic ligands and two axial aqua ligands. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link neighboring mol­ecules, generating a two-dimensional framework containing eight-membered H4O4 rings. In addition, the dimethyl­formamide solvent mol­ecules are hydrogen bonded to the two-dimensional framework via the NH groups of the H2MIDA− ligands

    Dichlorido(4′-ferrocenyl-2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)zinc acetonitrile monosolvate

    Get PDF
    The title complex, [FeZn(C5H5)Cl2(C20H14N3)]·CH3CN, is composed of one ZnII atom, one 4′-ferrocenyl-2,2′:6′,2′′-terpyridine (fctpy) ligand, two Cl atoms and one acetonitrile solvent mol­ecule. The ZnII atom is five-coordinated in a trigonal–bipyramidal geometry by the tridentate chelating fctpy ligand and two Cl atoms

    (4′-Ferrocenyl-2,2′:6′,2′′-terpyridine-κ3 N 1,N 1′,N 1′′)(1,10-phenanthroline-κ2 N,N′)zinc(II) bis­(perchlorate) acetonitrile monosolvate

    Get PDF
    In the title complex, [FeZn(C5H5)(C20H14N3)(C12H8N2)](ClO4)2·CH3CN, the ZnII atom is five-coordinated by a tridentate chelating 4′-ferrocenyl-2,2′:6′,2′′-terpyridine (fctpy) ligand and a bidentate chelating 1,10-phenanthroline (phen) ligand in a distorted square-pyramidal environment with a phen N atom located at the apical position [Zn—N = 2.259 (4) Å]. The terpyridyl motif in each fctpy ligand is coplanar, but the cyclo­penta­dienyl ring is twisted by 9.5 (2)° out of coplanarity with each central pyridine. The two cyclo­penta­dienyl rings of the ferrocenyl group are almost eclipsed with a deviation of 4.5 (1)°. In addition, inter­molecular π–π inter­actions [centroid–centroid distance 3.753 (2) Å] are present between the cyclo­penta­dienyl and outer pyridyl rings of the fctpy ligands. One of the perchlorate anions is equally disordered over two positions

    (4′-Ferrocenyl-2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)(1,10-phenanthroline-κ2 N,N′)copper(II) bis(perchlorate) acetonitrile solvate

    Get PDF
    The title complex, [CuFe(C5H5)(C20H14N3)(C12H8N2)](ClO4)2·C2H3N, consists of a mononuclear [Cu(C12H8N2)(C25H19FeN3)]2+ cation, two ClO4 − anions (one of which is disordered over two positions with equal occupancy) and one CH3CN solvent mol­ecule. The CuII center has a distorted square-pyramidal coordination with three N atoms of the 4′-ferrocenyl-2,2′:6′,2′′- terpyridine (fctpy) ligand and one 1,10-phenanthroline (phen) N atom in the basal plane and a second phen N atom in the apical position with an axial distance of 2.254 (4) Å. The disordered ClO4 − anion is weakly coordin­ated to the CuII ion with a Cu—O distance of 2.766 (11) Å. The two cyclo­penta­dienyl rings of the ferrocenyl group are almost eclipsed with a deviation of 4.7 (1) °, and are involved in inter­molecular π–π inter­actions with the outer pyridyl rings of the fctpy ligands [centroid–centroid distance = 3.759 (2) Å.]

    1-(2-Naphth­yl)-3-phenyl­prop-2-en-1-one

    Get PDF
    The title compound, C19H14O, contains two independent mol­ecules with the same s-cis conformation for the ketone unit. Both mol­ecules are non-planar with dihedral angles of 51.9 (1) and 48.0 (1)° between the benzene ring and the naphthalene ring system. In the crystal, neighboring mol­ecules are stabilized by intermolecular C—H⋯π inter­actions, giving a two-dimensional supra­molecular array parallel to the ab plane

    2,4,6-Tri-p-tolyl­pyridine

    Get PDF
    In the title compound, C26H23N, the complete molecule is generated by crystallographic mirror symmetry, with the N atom and four C atoms lying on the reflection plane. The dihedral angles between the pyridine ring and pendant benzene rings are 2.9 (1), 14.1 (1) and 14.1 (1)°. Neighbouring mol­ecules are stabilized through inter­molecular π–π inter­actions along the c axis [centroid-to-centroid distance = 3.804 (2) Å], forming one-dimensional chains

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    Cortex phellodendri

    Get PDF
    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm

    Fine Mapping of the NRG1 Hirschsprung's Disease Locus

    Get PDF
    The primary pathology of Hirschsprung's disease (HSCR, colon aganglionosis) is the absence of ganglia in variable lengths of the hindgut, resulting in functional obstruction. HSCR is attributed to a failure of migration of the enteric ganglion precursors along the developing gut. RET is a key regulator of the development of the enteric nervous system (ENS) and the major HSCR-causing gene. Yet the reduced penetrance of RET DNA HSCR-associated variants together with the phenotypic variability suggest the involvement of additional genes in the disease. Through a genome-wide association study, we uncovered a ∼350 kb HSCR-associated region encompassing part of the neuregulin-1 gene (NRG1). To identify the causal NRG1 variants contributing to HSCR, we genotyped 243 SNPs variants on 343 ethnic Chinese HSCR patients and 359 controls. Genotype analysis coupled with imputation narrowed down the HSCR-associated region to 21 kb, with four of the most associated SNPs (rs10088313, rs10094655, rs4624987, and rs3884552) mapping to the NRG1 promoter. We investigated whether there was correlation between the genotype at the rs10088313 locus and the amount of NRG1 expressed in human gut tissues (40 patients and 21 controls) and found differences in expression as a function of genotype. We also found significant differences in NRG1 expression levels between diseased and control individuals bearing the same rs10088313 risk genotype. This indicates that the effects of NRG1 common variants are likely to depend on other alleles or epigenetic factors present in the patients and would account for the variability in the genetic predisposition to HSCR
    corecore