1,478 research outputs found

    The linear and nonlinear Jaynes-Cummings model for the multiphoton transition

    Full text link
    With the Jaynes-Cummings model, we have studied the atom and light field quantum entanglement of multiphoton transition, and researched the effect of initial state superposition coefficient C1C_{1}, the transition photon number NN, the quantum discord δ\delta and the nonlinear coefficient χ\chi on the quantum entanglement degrees. We have given the quantum entanglement degrees curves with time evolution, and obtained some results, which should have been used in quantum computing and quantum information.Comment: arXiv admin note: text overlap with arXiv:1404.0821, arXiv:1205.0979 by other author

    Measurement-device-independent quantum key distribution over untrustful metropolitan network

    Full text link
    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200 square kilometers metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate ten times larger than previous result. Our results demonstrate that the MDIQKD network, combining the best of both worlds --- security and practicality, constitutes an appealing solution to secure metropolitan communications.Comment: 17 pages, 4 figure

    Lead contamination alters enzyme activities and microbial composition in the rhizosphere soil of the hyperaccumulator Pogonatherum crinitum

    Get PDF
    Pogonatherum crinitum is a promising lead (Pb) hyperaccumulator; however, the effects of Pb contamination on P. crinitum rhizosphere soil enzymatic activities and microbial composition remain largely unexplored. Thus, an indoor experiment was conducted by cultivating P. crinitum seedlings and exposing them to four Pb concentrations (0, 1,000, 2000 and 3000 mg/kg Pb). Protease, urease, acid phosphatase and invertase activities were determined using standard methods while soil bacterial composition was determined by 16 S rDNA sequencing. The results showed that rhizosphere soil acid phosphatase activity significantly increased with increasing Pb concentration, while urease activity was significantly greater in rhizosphere soil contaminated with 1000 and 2000 mg/kg than in the control. There was a clear shift in bacterial composition during phytoremediation by P. crinitum. Compared to the control, Bacteroidetes was more abundant in all Pb-contaminated soils, Actinobacteria was more abundant in 1000 mg/kg Pb-treated soil, and Firmicutes was more abundant in 3000 mg/kg Pb-treated soil. Positive correlations were observed between dominant bacterial phyla and soil enzyme activities. Metabolic pathways, such as ABC transporter, quinine reductase, and ATP-binding protein were significantly increased in rhizosphere soil bacteria with Pb contamination. In conclusion, Pb contamination differentially influenced the activities of rhizosphere soil enzymes, specifically increasing acid phosphatase and urease activities, and alters the dominance of soil bacteria through up-regulation of genes related to some metabolic pathways. The strong correlations between dominant bacterial phyla and enzymatic activities suggest synergetic effects on the growth of P. crinitum during Pb contamination

    An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity of xylose and enhanced enzymatic digestibility

    Get PDF
    An effective method for corncob saccharification was investigated over a magnetic carbon-based solid acid (MMCSA) catalyst in the aqueous phase. MMCSA was synthesized through a simple and inexpensive impregnation-carbonization-sulfonation process. Under the optimal reaction conditions (150 °C, 2 h, 0.5 g corncob, 0.5 g catalyst and 50 ml deionized water), 74.9% of xylose yield was directly obtained from corncob, with 91.7% cellulose retention in the residue. After reaction, the MMCSA was easily separated from the residue by an external magnet and reused 4 times showing high stability and catalytic activity. The enzymatic digestibility of the pretreated residue reached 95.2%, with a total sugar yield of 90.4%. The morphologic and structural properties of the natural and treated corncobs were analyzed primarily through 3D X-ray microscopy to characterize the cell wall thickness, porosity, and pore surface area distribution. The increase of macropores (pore surface areas > 200 μm2) was beneficial to the accessibility of cellulose to cellulosic enzymes, so the enzymatic digestibility was enhanced immediately. Compared with other traditional hydrolysis methods, this two-step hydrolysis approach represents an environmentally friendly and sustainable saccharification of lignocellulose to produce xylose and glucose while achieving the same level of reaction efficiency

    Preparation of reducing sugars from corncob by solid acid catalytic pretreatment combined with in situ enzymatic hydrolysis

    Get PDF
    The efficient conversion of hemicellulose and cellulose into reducing sugars remains as one major challenge for biorefinery of lignocellulosic biomass. In this work, saccharification of corncob in the aqueous phase was effectively realized via pretreatment by magnetic carbon-based solid acid (MMCSA) catalyst, combined with the subsequent in situ enzymatic hydrolysis (occurring in the same pretreatment system after separation of MMCSA). Through the combined two-step hydrolysis of corncob, the total sugar (xylose and glucose) yield of 90.03% was obtained, including a xylose yield of 86.99% and an enzymatic digestibility of pretreatment residue of 91.24% (cellulase loading of 20 FPU/g, 24 h). Compared with the traditional enzymatic hydrolysis of pretreated residue, the presented in situ enzymatic hydrolysis system can reach a comparable enzymatic digestibility in one-third reacting time with a half cellulase loading and save about 31% water consumption, which provides a more sustainable and low-cost method for the saccharification of lignocellulose
    • …
    corecore