5 research outputs found

    Iron pnictides as a new setting for quantum criticality

    Full text link
    Two major themes in the physics of condensed matter are quantum critical phenomena and unconventional superconductivity. These usually occur in the context of competing interactions in systems of strongly-correlated electrons. All this interesting physics comes together in the behavior of the recently discovered iron pnictide compounds that have generated enormous interest because of their moderately high-temperature superconductivity. The ubiquity of antiferromagnetic ordering in their phase diagrams naturally raises the question of the relevance of magnetic quantum criticality, but the answer remains uncertain both theoretically and experimentally. Here we show that the undoped iron pnictides feature a novel type of magnetic quantum critical point, which results from a competition between electronic localization and itinerancy. Our theory provides a mechanism to understand the experimentally-observed variation of the ordered moment among the undoped iron pnictides. We suggest P substitution for As in the undoped iron pnictides as a means to access this new example of magnetic quantum criticality in an unmasked fashion. Our findings point to the iron pnictides as a much-needed new setting for quantum criticality, one that offers a new set of control parameters.Comment: (v3) New abstract, more explanatory material, accepted for PNA

    A Twisted Ladder: relating the Fe superconductors to the high TcT_c cuprates

    Full text link
    We construct a 2-leg ladder model of an Fe-pnictide superconductor and discuss its properties and relationship with the familiar 2-leg cuprate model. Our results suggest that the underlying pairing mechanism for the Fe-pnictide superconductors is similar to that for the cuprates.Comment: 5 pages, 4 figure

    Point-Contact Spectroscopy of Iron-Based Layered Superconductor LaO0.9_{0.9}F0.1δ_{0.1-\delta}FeAs

    Full text link
    We present point-contact spectroscopy data for junctions between a normal metal and the newly discovered F-doped superconductor LaO0.9_{0.9}F0.1δ_{0.1-\delta}FeAs (F-LaOFeAs). A zero-bias conductance peak was observed and its shape and magnitude suggests the presence of Andreev bound states at the surface of F-LaOFeAs, which provides a possible evidence of an unconventional pairing symmetry with a nodal gap function. The maximum gap value Δ03.9±0.7\Delta_0\approx3.9\pm0.7meV was determined from the measured spectra, in good agreement with the recent experiments on specific heat and lower critical field.Comment: 5 pages, 4 figure

    Unconventional superconductivity

    No full text
    corecore