29,550 research outputs found
GeV Majorana Neutrinos in Top-quark Decay at the LHC
We explore the \Delta L=2 same-sign dilepton signal from top-quark decay via
a Majorana neutrino at the LHC in the top anti-top pair production samples. The
signature is same-sign dilepton plus multi-jets with no significant missing
energy. The most optimistic region lies where the Majorana neutrino mass is
between 15-65 GeV. For 300 fb^-1 integrated luminosity, it is possible to probe
S_{ij}, the effective mixing parameter, to order of 10^-5.Comment: 15 pages, 8 figure
Surface effects on the Mott-Hubbard transition in archetypal VO
We present an experimental and theoretical study exploring surface effects on
the evolution of the metal-insulator transition in the model Mott-Hubbard
compound Cr-doped VO. We find a microscopic domain formation that is
clearly affected by the surface crystallographic orientation. Using scanning
photoelectron microscopy and X-ray diffraction, we find that surface defects
act as nucleation centers for the formation of domains at the
temperature-induced isostructural transition and favor the formation of
microscopic metallic regions. A density functional theory plus dynamical mean
field theory study of different surface terminations shows that the surface
reconstruction with excess vanadyl cations leads to doped, and hence more
metallic surface states, explaining our experimental observations.Comment: 5 pages, 4 figure
Quantum Chemistry, Anomalous Dimensions, and the Breakdown of Fermi Liquid Theory in Strongly Correlated Systems
We formulate a local picture of strongly correlated systems as a Feynman sum
over atomic configurations. The hopping amplitudes between these atomic
configurations are identified as the renormalization group charges, which
describe the local physics at different energy scales. For a metallic system
away from half-filling, the fixed point local Hamiltonian is a generalized
Anderson impurity model in the mixed valence regime. There are three types of
fixed points: a coherent Fermi liquid (FL) and two classes of self-similar
(scale invariant) phases which we denote incoherent metallic states (IMS). When
the transitions between the atomic configurations proceed coherently at low
energies, the system is a Fermi liquid. Incoherent transitions between the low
energy atomic configurations characterize the incoherent metallic states. The
initial conditions for the renormalization group flow are determined by the
physics at rather high energy scales. This is the domain of local quantum
chemistry. We use simple quantum chemistry estimates to specify the basin of
attraction of the IMS fixed points.Comment: 12 pages, REVTE
Phosphorylation by the stress-activated MAPK Slt2 down-regulates the yeast TOR complex 2
Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an
essential regulator of plasma membrane lipid and protein homeostasis. How TORC2
activity is modulated in response to changes in the status of the cell envelope
is unclear. Here we document that TORC2 subunit Avo2 is a direct target of
Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity
pathway. Activation of Slt2 by overexpression of a constitutively active allele
of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a
negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK
phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated
phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion
of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive
to two stresses (myriocin treatment and elevated exogenous acetic acid) that
the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary
for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2
down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic
Avo2 shows significant displacement from the plasma membrane, suggesting that
Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first
demonstration that TORC2 function is regulated by MAPK-mediated
phosphorylation.Comment: This work was supported by National Institutes of Health (NIH)
Predoctoral Traineeship GM07232 and a University of California at Berkeley
MacArthur and Lakhan-Pal Graduate Fellowship to K.L.L., Erwin Schroedinger
Fellowship J3787-B21 from the Austrian Science Fund to AE-A, Marie
Sklodowska-Curie Action H2020-MSCA-IF-2016 InsiliCardio, GA 75083 to CMA, and
NIH R01 research grant GM21841 to J
A grid-based infrastructure for distributed retrieval
In large-scale distributed retrieval, challenges of latency, heterogeneity, and dynamicity emphasise the importance of infrastructural support in reducing the development costs of state-of-the-art solutions. We present a service-based infrastructure for distributed retrieval which blends middleware facilities and a design framework to ‘lift’ the resource sharing approach and the computational services of a European Grid platform into the domain of e-Science applications. In this paper, we give an overview of the DILIGENT Search Framework and illustrate its exploitation in the field of Earth Science
Non-Fermi Liquids in the Extended Hubbard Model
I summarize recent work on non-Fermi liquids within certain generalized
Anderson impurity model as well as in the large dimensionality () limit of
the two-band extended Hubbard model. The competition between local charge and
spin fluctuations leads either to a Fermi liquid with renormalized
quasiparticle excitations, or to non-Fermi liquids with spin-charge separation.
These results provide new insights into the phenomenological similarities and
differences between different correlated metals. While presenting these
results, I outline a general strategy of local approach to non-Fermi liquids in
correlated electron systems.Comment: 30 pages, REVTEX, 14 figures included. To appear in ``Non Fermi
Liquid Physics'', J. Phys: Cond. Matt. (1997
Hall Effect in Nested Antiferromagnets Near the Quantum Critical Point
We investigate the behavior of the Hall coefficient in the case of
antiferromagnetism driven by Fermi surface nesting, and find that the Hall
coefficient should abruptly increase with the onset of magnetism, as recently
observed in vanadium doped chromium. This effect is due to the sudden removal
of flat portions of the Fermi surface upon magnetic ordering. Within this
picture, the Hall coefficient should scale as the square of the residual
resistivity divided by the impurity concentration, which is consistent with
available data.Comment: published version; an accidental interchange in the quoting of
analytic dependencies was correcte
Andreev Reflection and Spin Injection into and wave Superconductors
We study the effect of spin injection into and wave superconductors,
with an emphasis on the interplay between boundary and bulk spin transport
properties. The quantities of interest include the amount of non-equilibrium
magnetization (), as well as the induced spin-dependent current () and
boundary voltage (). In general, the Andreev reflection makes each of the
three quantities depend on a different combination of the boundary and bulk
contributions. The situation simplifies either for half-metallic ferromagnets
or in the strong barrier limit, where both and depend solely on the
bulk spin transport/relaxation properties. The implications of our results for
the on-going spin injection experiments in high cuprates are discussed.Comment: 4 pages, REVTEX, 1 figure included; typos correcte
One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre
A quantum chain model of many molecule motors is proposed as a mathematical
physics theory on the microscopic modeling of classical force-velocity relation
and tension transients of muscle fibre. We proposed quantum many-particle
Hamiltonian to predict the force-velocity relation for the slow release of
muscle fibre which has no empirical relation yet, it is much more complicate
than hyperbolic relation. Using the same Hamiltonian, we predicted the
mathematical force-velocity relation when the muscle is stimulated by
alternative electric current. The discrepancy between input electric frequency
and the muscle oscillation frequency has a physical understanding by Doppler
effect in this quantum chain model. Further more, we apply quantum physics
phenomena to explore the tension time course of cardiac muscle and insect
flight muscle. Most of the experimental tension transients curves found their
correspondence in the theoretical output of quantum two-level and three-level
model. Mathematically modeling electric stimulus as photons exciting a quantum
three-level particle reproduced most tension transient curves of water bug
Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde
Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling
Recent theoretical studies of topologically nontrivial electronic states in
Kondo insulators have pointed to the importance of spin-orbit coupling (SOC)
for stabilizing these states. However, systematic experimental studies that
tune the SOC parameter in Kondo insulators remain elusive.
The main reason is that variations of (chemical) pressure or doping strongly
influence the Kondo coupling and the chemical potential --
both essential parameters determining the ground state of the material -- and
thus possible tuning effects have remained unnoticed. Here
we present the successful growth of the substitution series
CeBi(PtPd) () of the archetypal
(noncentrosymmetric) Kondo insulator CeBiPt. The Pt-Pd substitution
is isostructural, isoelectronic, and isosize, and therefore likely to leave
and essentially unchanged. By contrast, the large mass
difference between the element Pt and the element Pd leads to a large
difference in , which thus is the dominating tuning
parameter in the series. Surprisingly, with increasing (decreasing
), we observe a Kondo insulator to semimetal transition,
demonstrating an unprecedented drastic influence of the SOC. The fully
substituted end compound CeBiPd shows thermodynamic signatures of a
recently predicted Weyl-Kondo semimetal.Comment: 6 pages, 5 figures plus Supplemental Materia
- …