163 research outputs found
Myostatin Is Elevated in Congenital Heart Disease and After Mechanical Unloading
Myostatin is a negative regulator of skeletal muscle mass whose activity is upregulated in adult heart failure (HF); however, its role in congenital heart disease (CHD) is unknown.We studied myostatin and IGF-1 expression via Western blot in cardiac tissue at varying degrees of myocardial dysfunction and after biventricular support in CHD by collecting myocardial biopsies from four patient cohorts: A) adult subjects with no known cardiopulmonary disease (left ventricle, LV), (Adult Normal), (n = 5); B) pediatric subjects undergoing congenital cardiac surgery with normal RV size and function (right ventricular outflow tract, RVOT), (n = 3); C) pediatric subjects with worsening but hemodynamically stable LV failure [LV and right ventricle (LV, RV,)] with biopsy collected at the time of orthotopic heart transplant (OHT), (n = 7); and D) pediatric subjects with decompensated bi-ventricular failure on BiVAD support with biopsy collected at OHT (LV, RV, BiVAD), (n = 3).The duration of HF was longest in OHT patients compared to BIVAD. The duration of BiVAD support was 4.3±1.9 days. Myostatin expression was significantly increased in LV-OHT compared to RV-OHT and RVOT, and was increased more than double in decompensated biventricular HF (BiVAD) compared to both OHT and RVOT. An increased myostatin/IGF-1 ratio was associated with ventricular dysfunction.Myostatin expression in increased in CHD, and the myostatin/IGF-1 ratio increases as ventricular function deteriorates. Future investigation is necessary to determine if restoration of the physiologic myostatin/IGF-1 ratio has therapeutic potential in HF
Acute heart failure caused by a giant hepatocellular metastatic tumor of the right atrium
We present a symptomatic 40-year-old cirrhotic man who presented with sudden onsets of syncope. Echocardiography revealed right ventricular outflow track obstruction caused by a huge right atrial mass. The tumor was surgically excised under cardiopulmonary bypass. Although no primary cancerous lesion in the liver was detected, histopathology revealed that the mass was a metastatic hepatocellular carcinoma. The aim of this report is to show the value of urgent preoperative computed tomography and its contribution in the operative strategy. The importance of urgent surgical treatment with tricuspid valve sparing tumor resection is emphasized even though the prognosis for such patients is dismal. We also discuss the further management options of such rare case
Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction
<p>Abstract</p> <p>Background</p> <p>MicroRNAs(miRNAs) are important cellular components and their dysfunction is associated with various diseases. Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases. Although several miRNAs are reported to be associated with AMI, more novel miRNAs are needed to further investigate and improve certainty</p> <p>Methods</p> <p>We applied a well-established acute myocardial infarction rat model and performed miRNAs microarray experiments upon the myocardium tissue of rats with AMI and under sham control. We identified the differentially expressed miRNAs and analyzed the function of miRNA targets, transcription factors, and host genes based on bioinformatics.</p> <p>Results</p> <p>As a result, the levels of expression of seventeen miRNAs significantly deregulated, of which four miRNAs were further validated by qRT-PCR. In addition, we observed that the transcription factors, targets, and host genes of these deregulated miRNAs are enriched in cardiovascular-related functions.</p> <p>Conclusion</p> <p>We found that the miRNAs expression level altered in rats with AMI and differentially expressed miRNAs may be novel biomarkers of AMI.</p
No hypoperfusion is produced in the epicardium during application of myocardial topical negative pressure in a porcine model
ABSTRACT: BACKGROUND: Topical negative pressure (TNP), commonly used in wound therapy, has been shown to increase blood flow and stimulate angiogenesis in skeletal muscle. We have previously shown that a myocardial TNP of -50 mmHg significantly increases microvascular blood flow in the myocardium. When TPN is used in wound therapy (on skeletal and subcutaneous tissue) a zone of relative hypoperfusion is seen close to the wound edge. Hypoperfusion induced by TNP is thought to depend on tissue density, distance from the negative pressure source, and the amount negative pressure applied. When applying TNP to the myocardium, a significant, long-standing zone of hypoperfusion could theoretically cause ischemia, and negative effects on the myocardium. The current study was designed to elucidate whether hypoperfusion was produced during myocardial TNP. METHODS: Six pigs underwent median sternotomy. Laser Doppler probes were inserted horizontally into the heart muscle in the LAD area, at depths of approximately, 1-2 mm. The microvascular blood flow was measured before and after the application of a TNP. Analyses were performed before left anterior descending artery (LAD) occlusion (normal myocardium) and after 20 minutes of LAD occlusion (ischemic myocardium). RESULTS: A TNP of -50 mmHg induced a significant increase in microvascular blood flow in normal myocardium (**p = 0.01), while -125 mmHg did not significantly alter the microvascular blood flow. In ischemic myocardium a TNP of -50 mmHg induced a significant increase in microvascular blood flow (*p = 0.04), while -125 mmHg did not significantly alter the microvascular blood flow. CONCLUSION: No hypoperfusion could be observed in the epicardium in neither normal nor ischemic myocardium during myocardial TNP
A compare between myocardial topical negative pressure levels of -25 mmHg and -50 mmHg in a porcine model
<p>Abstract</p> <p>Background</p> <p>Topical negative pressure (TNP), widely used in wound therapy, is known to stimulate wound edge blood flow, granulation tissue formation, angiogenesis, and revascularization. We have previously shown that application of a TNP of -50 mmHg to the myocardium significantly increases microvascular blood flow in the underlying tissue. We have also shown that a myocardial TNP levels between -75 mmHg and -150 mmHg do not induce microvascular blood flow changes in the underlying myocardium. The present study was designed to elucidate the difference between -25 mmHg and -50 mmHg TNP on microvascular flow in normal and ischemic myocardium.</p> <p>Methods</p> <p>Six pigs underwent median sternotomy. The microvascular blood flow in the myocardium was recorded before and after the application of TNP using laser Doppler flowmetry. Analyses were performed before left anterior descending artery (LAD) occlusion (normal myocardium), and after 20 minutes of LAD occlusion (ischemic myocardium).</p> <p>Results</p> <p>A TNP of -25 mmHg significantly increased microvascular blood flow in both normal (from 263.3 ± 62.8 PU before, to 380.0 ± 80.6 PU after TNP application, * <it>p </it>= 0.03) and ischemic myocardium (from 58.8 ± 17.7 PU before, to 85.8 ± 20.9 PU after TNP application, * <it>p </it>= 0.04). A TNP of -50 mmHg also significantly increased microvascular blood flow in both normal (from 174.2 ± 20.8 PU before, to 240.0 ± 34.4 PU after TNP application, * <it>p </it>= 0.02) and ischemic myocardium (from 44.5 ± 14.0 PU before, to 106.2 ± 26.6 PU after TNP application, ** <it>p </it>= 0.01).</p> <p>Conclusion</p> <p>Topical negative pressure of -25 mmHg and -50 mmHg both induced a significant increase in microvascular blood flow in normal and in ischemic myocardium. The increase in microvascular blood flow was larger when using -25 mmHg on normal myocardium, and was larger when using -50 mmHg on ischemic myocardium; however these differences were not statistically significant.</p
Hepatoprotective effects of methanol extract of Carissa opaca leaves on CCl4-induced damage in rat
<p>Abstract</p> <p>Background</p> <p><it>Carissa opaca </it>(Apocynaceae) leaves possess antioxidant activity and hepatoprotective effects, and so may provide a possible therapeutic alternative in hepatic disorders. The effect produced by methanolic extract of <it>Carissa opaca </it>leaves (MCL) was investigated on CCl<sub>4</sub>-induced liver damages in rat.</p> <p>Methods</p> <p>30 rats were divided into five groups of six animals of each, having free access to food and water <it>ad libitum</it>. Group I (control) was given olive oil and DMSO, while group II, III and IV were injected intraperitoneally with CCl<sub>4 </sub>(0.5 ml/kg) as a 20% (v/v) solution in olive oil twice a week for 8 weeks. Animals of group II received only CCl<sub>4</sub>. Rats of group III were given MCL intragastrically at a dose of 200 mg/kg bw while that of group IV received silymarin at a dose of 50 mg/kg bw twice a week for 8 weeks. However, animals of group V received MCL only at a dose of 200 mg/kg bw twice a week for 8 weeks. The activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and γ-glutamyltransferase (γ-GT) were determined in serum. Catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px), glutathione reductase (GSR) and quinone reductase (QR) activity was measured in liver homogenates. Lipid peroxidation (thiobarbituric acid reactive substances; TBARS), glutathione (GSH) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration was also assessed in liver homogenates. Phytochemicals in MCL were determined through qualitative and high performance liquid chromatography (HPLC) analysis.</p> <p>Results</p> <p>Hepatotoxicity induced with CCl<sub>4 </sub>was evidenced by significant increase in lipid peroxidation (TBARS) and H<sub>2</sub>O<sub>2 </sub>level, serum activities of AST, ALT, ALP, LDH and γ-GT. Level of GSH determined in liver was significantly reduced, as were the activities of antioxidant enzymes; CAT, POD, SOD, GSH-Px, GSR, GST and QR. On cirrhotic animals treated with CCl<sub>4</sub>, histological studies showed centrilobular necrosis and infiltration of lymphocytes. MCL (200 mg/kg bw) and silymarin (50 mg/kg bw) co-treatment prevented all the changes observed with CCl<sub>4</sub>-treated rats. The phytochemical analysis of MCL indicated the presence of flavonoids, tannins, alkaloids, phlobatannins, terpenoids, coumarins, anthraquinones, and cardiac glycosides. Isoquercetin, hyperoside, vitexin, myricetin and kaempherol was determined in MCL.</p> <p>Conclusion</p> <p>These results indicate that MCL has a significant protective effect against CCl<sub>4 </sub>induced hepatotoxicity in rat, which may be due to its antioxidant and membrane stabilizing properties.</p
Thyroid Hormone Promotes Remodeling of Coronary Resistance Vessels
Low thyroid hormone (TH) function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3) in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX), were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC)
N-acetylcysteine does not prevent contrast-induced nephropathy after cardiac catheterization in patients with diabetes mellitus and chronic kidney disease: a randomized clinical trial
<p>Abstract</p> <p>Background</p> <p>Patients with diabetes mellitus (DM) and chronic kidney disease (CKD) constitute to be a high-risk population for the development of contrast-induced nephropathy (CIN), in which the incidence of CIN is estimated to be as high as 50%. We performed this trial to assess the efficacy of <it>N</it>-acetylcysteine (NAC) in the prevention of this complication.</p> <p>Methods</p> <p>In a prospective, double-blind, placebo controlled, randomized clinical trial, we studied 90 patients undergoing elective diagnostic coronary angiography with DM and CKD (serum creatinine ≥ 1.5 mg/dL for men and ≥ 1.4 mg/dL for women). The patients were randomly assigned to receive either oral NAC (600 mg BID, starting 24 h before the procedure) or placebo, in adjunct to hydration. Serum creatinine was measured prior to and 48 h after coronary angiography. The primary end-point was the occurrence of CIN, defined as an increase in serum creatinine ≥ 0.5 mg/dL (44.2 μmol/L) or ≥ 25% above baseline at 48 h after exposure to contrast medium.</p> <p>Results</p> <p>Complete data on the outcomes were available on 87 patients, 45 of whom had received NAC. There were no significant differences between the NAC and placebo groups in baseline characteristics, amount of hydration, or type and volume of contrast used, except in gender (male/female, 20/25 and 34/11, respectively; P = 0.005) and the use of statins (62.2% and 37.8%, respectively; P = 0.034). CIN occurred in 5 out of 45 (11.1%) patients in the NAC group and 6 out of 42 (14.3%) patients in the placebo group (P = 0.656).</p> <p>Conclusion</p> <p>There was no detectable benefit for the prophylactic administration of oral NAC over an aggressive hydration protocol in patients with DM and CKD.</p> <p>Trial registration</p> <p>NCT00808795</p
Calpain Cleavage of Brain Glutamic Acid Decarboxylase 65 Is Pathological and Impairs GABA Neurotransmission
Previously, we have shown that the GABA synthesizing enzyme, L-glutamic acid decarboxylase 65 (GAD65) is cleaved to form its truncated form (tGAD65) which is 2–3 times more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient physiological stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is poorly understood. In this communication, we examined the cleavage of fGAD65 under diverse pathological conditions including rats under ischemia/reperfusion insult as well as rat brain synaptosomes and primary neuronal cultures subjected to excessive stimulation with high concentration of KCl. We have shown that the formation of tGAD65 progressively increases with increasing stimulus concentration both in rat brain synaptosomes and primary rat embryo cultures. More importantly, direct cleavage of synaptic vesicle - associated fGAD65 by calpain was demonstrated and the resulting tGAD65 bearing the active site of the enzyme was detached from the synaptic vesicles. Vesicular GABA transport of the newly synthesized GABA was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65 in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate as indicated by microdialysis. Moreover, the levels of tGAD65 was also proportional to the degree of cell death when the primary neuronal cultures were exposed to high KCl. Based on these observations, we conclude that calpain-mediated cleavage of fGAD65 is pathological, presumably due to decrease in the activity of synaptic vesicle - associated fGAD65 resulting in a decrease in the GABA synthesis - packaging coupling process leading to reduced GABA neurotransmission
Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem?
Recent studies in various rodent models of pathologic ventricular hypertrophy report the re-expression of deiodinase type 3 (D3) in cardiomyocytes. D3 inactivates thyroid hormone (T3) and is mainly expressed in tissues during development. The stimulation of D3 activity in ventricular hypertrophy and subsequent heart failure is associated with severe impairment of cardiac T3 signaling. Hypoxia-induced signaling appears to drive D3 expression in the hypertrophic cardiomyocyte, but other signaling cascades implicated in hypertrophy are also capable of stimulating transcription of the DIO3 gene. Many cardiac genes are transcriptionally regulated by T3 and impairment of T3 signaling will not only reduce energy turnover, but also lead to changes in gene expression that contribute to contractile dysfunction in pathologic remodeling. Whether stimulation of D3 activity and the ensuing local T3-deficiency is an adaptive response of the stressed heart or part of the pathologic signaling network leading to heart failure, remains to be established
- …