5 research outputs found

    A Search for Time Variation of the Fine Structure Constant

    Get PDF
    A method offering an order of magnitude sensitivity gain is described for using quasar spectra to investigate possible time or space variation in the fine structure constant, alpha. Applying the technique to a sample of 30 absorption systems, spanning redshifts 0.5 < z< 1.6, obtained with the Keck I telescope, we derive limits on variations in alpha over a wide range of epochs. For the whole sample Delta(alpha)/alpha = -1.1 +/- 0.4 x 10^{-5}. This deviation is dominated by measurements at z > 1, where Delta(alpha)/alpha = -1.9 +/- 0.5 x 10^{-5}. For z < 1, Delta(alpha)/alpha = -0.2 +/- 0.4 x 10^{-5}, consistent with other known constraints. Whilst these results are consistent with a time-varying alpha, further work is required to explore possible systematic errors in the data, although careful searches have so far not revealed any.Comment: 4 pages, 1 figure, accepted for publication in Physical Review Letter

    Further Evidence for Cosmological Evolution of the Fine Structure Constant

    Get PDF
    We describe the results of a search for time variability of the fine structure constant, alpha, using absorption systems in the spectra of distant quasars. Three large optical datasets and two 21cm/mm absorption systems provide four independent samples, spanning 23% to 87% of the age of the universe. Each sample yields a smaller alpha in the past and the optical sample shows a 4-sigma deviation: da/a = -0.72 +/- 0.18 x 10^{-5} over the redshift range 0.5 < z < 3.5. We find no systematic effects which can explain our results. The only potentially significant systematic effects push da/a towards positive values, i.e. our results would become more significant were we to correct for them.Comment: 5 pages, 1 figure. Published in Phys. Rev. Lett. Small changes to discussion, added an acknowledgement and a referenc

    New varying speed of light theories

    Full text link
    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying cc, dispelling the myth that the constancy of cc is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying cc induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how ``doubly special'' relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra high energy cosmic rays and gamma ray bursts. Some recent work on the physics of ``black'' holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in cc. Finally we describe the observational status of the theory. The evidence is currently slim -- redshift dependence in the atomic fine structure, anomalies with ultra high energy cosmic rays, and (to a much lesser extent) the acceleration of the universe and the WMAP data. The constraints (e.g. those arising from nucleosynthesis or geological bounds) are tight, but not insurmountable. We conclude with the observational predictions of the theory, and the prospects for its refutation or vindication.Comment: Final versio
    corecore