5 research outputs found
A Search for Time Variation of the Fine Structure Constant
A method offering an order of magnitude sensitivity gain is described for
using quasar spectra to investigate possible time or space variation in the
fine structure constant, alpha. Applying the technique to a sample of 30
absorption systems, spanning redshifts 0.5 < z< 1.6, obtained with the Keck I
telescope, we derive limits on variations in alpha over a wide range of epochs.
For the whole sample Delta(alpha)/alpha = -1.1 +/- 0.4 x 10^{-5}. This
deviation is dominated by measurements at z > 1, where Delta(alpha)/alpha =
-1.9 +/- 0.5 x 10^{-5}. For z < 1, Delta(alpha)/alpha = -0.2 +/- 0.4 x 10^{-5},
consistent with other known constraints. Whilst these results are consistent
with a time-varying alpha, further work is required to explore possible
systematic errors in the data, although careful searches have so far not
revealed any.Comment: 4 pages, 1 figure, accepted for publication in Physical Review
Letter
Further Evidence for Cosmological Evolution of the Fine Structure Constant
We describe the results of a search for time variability of the fine
structure constant, alpha, using absorption systems in the spectra of distant
quasars. Three large optical datasets and two 21cm/mm absorption systems
provide four independent samples, spanning 23% to 87% of the age of the
universe. Each sample yields a smaller alpha in the past and the optical sample
shows a 4-sigma deviation: da/a = -0.72 +/- 0.18 x 10^{-5} over the redshift
range 0.5 < z < 3.5. We find no systematic effects which can explain our
results. The only potentially significant systematic effects push da/a towards
positive values, i.e. our results would become more significant were we to
correct for them.Comment: 5 pages, 1 figure. Published in Phys. Rev. Lett. Small changes to
discussion, added an acknowledgement and a referenc
New varying speed of light theories
We review recent work on the possibility of a varying speed of light (VSL).
We start by discussing the physical meaning of a varying , dispelling the
myth that the constancy of is a matter of logical consistency. We then
summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz
invariance; bimetric theories (where the speeds of gravity and light are not
the same); locally Lorentz invariant VSL theories; theories exhibiting a color
dependent speed of light; varying induced by extra dimensions (e.g. in the
brane-world scenario); and field theories where VSL results from vacuum
polarization or CPT violation. We show how VSL scenarios may solve the
cosmological problems usually tackled by inflation, and also how they may
produce a scale-invariant spectrum of Gaussian fluctuations, capable of
explaining the WMAP data. We then review the connection between VSL and
theories of quantum gravity, showing how ``doubly special'' relativity has
emerged as a VSL effective model of quantum space-time, with observational
implications for ultra high energy cosmic rays and gamma ray bursts. Some
recent work on the physics of ``black'' holes and other compact objects in VSL
theories is also described, highlighting phenomena associated with spatial (as
opposed to temporal) variations in . Finally we describe the observational
status of the theory. The evidence is currently slim -- redshift dependence in
the atomic fine structure, anomalies with ultra high energy cosmic rays, and
(to a much lesser extent) the acceleration of the universe and the WMAP data.
The constraints (e.g. those arising from nucleosynthesis or geological bounds)
are tight, but not insurmountable. We conclude with the observational
predictions of the theory, and the prospects for its refutation or vindication.Comment: Final versio