22 research outputs found

    Whole-genome characterization of human group C rotaviruses: identification of two lineages in the VP3 gene

    Get PDF
    Group C rotavirus (GCRV) is distributed worldwide as an enteric pathogen in humans and animals. However, to date, whole-genome sequences are available only for a human strain (Bristol) and a porcine strain (Cowden). To investigate the genetic diversity of human GCRVs, nearly full-length sequences of all 11 RNA segments were determined for human GCRVs detected recently in India (v508), Bangladesh (BS347), China (Wu82 and YNR001) and Japan (OH567 and BK0830) and analysed phylogenetically with sequence data for GCRVs published previously. All the RNA segments of human GCRV strains except for the VP3 gene showed high levels of conservation (>93 % nucleotide sequence identity, >92 % amino acid sequence identity), belonging to a single genetic cluster distinct from those of animal GCRVs. In contrast, the VP3 genes of human GCRVs could be discriminated into two clusters, designated M2 and M3, that were distinguished phylogenetically from those of porcine and bovine GCRVs (clusters M1 and M4, respectively). Between M2 and M3, amino acid sequence identity of the VP3 gene was 84.1–84.7 %, whereas high identities were observed within each cluster (92.3–97.6 % for M2, 98.2–99.3 % for M3). Sequence divergence among the four VP3 clusters was observed throughout the amino acid sequence except for conserved motifs, including those possibly related to enzyme functions of VP3. The presence of obvious genetic diversity only in the VP3 gene among human GCRVs suggested that either the M2 or M3 VP3 gene of human GCRVs might have been derived through reassortment from an animal GCRV or from an unidentified human GCRV strain belonging to a novel genogroup

    Fabrication, characterization and water wetting behavior of mesoscale 1D/2D periodic structured silica-zirconia sol-gel thin films

    No full text
    This study demonstrates the successful fabrication of mesoscale 1D and 2D surface periodic structured (patterned) silica-zirconia sol-gel thin films with high fidelity and relatively large area by soft lithography using commercially available compact disc (CD) as a master. A precursor sol (viscosity, 2.5 cP) of 7 : 3 silica to zirconia weight ratio, in low boiling mixed solvents (1-propanol and 2-butanol) with acetylacetone was used for thin film formation on pure silica glass by a dip coating technique. From the sols rheological properties, we calculated the 1D sol height in a groove of a 1D negative replica of CD in a polydimethyl siloxane stamp and compared it with the experimental peak height of the 1D gel pattern. External pressure was applied and optimized on a 1D pattern film for obtaining a high fidelity 2D pattern. The amorphous nature, visible transmittance, chemical bond vibration, thermal weight loss behaviour, physical thickness and refractive index of the films were also characterized. To tailor the water wetting behaviour of films in terms of static water contact angle values, the type of pattern (1D or 2D) was found to be a guiding factor. In addition, the transformation from a hydrophobic to hydrophilic film surface was found to depend on the film curing temperature. This observation was explained on the basis of the films root mean square surface roughness. The rigorously studied patterned films can be used in optics and microelectronics

    Integration of TADOX® technology to improve water reuse efficiency of constructed wetland-treated water

    No full text
    Constructed wetland (CW) is an effective and economical decentralized wastewater treatment (DWWT) method implemented in various developing nations. Such CW-treated water may be good for meeting discharge norms but when it comes to high-end reuse, it requires polishing and integration with advanced oxidation process (AOP)-based treatment. In this pursuit, TERI (The Energy and Resources Institute) Advanced Oxidation Technology (TADOX®) may be able to polish such streams and make the CW-treated water reusable. TADOX utilizes UV-TiO2 Photocatalysis (PC) as a secondary treatment followed by nanomaterial recovery. This study aims at evaluating TADOX treatment to polish treated water from a root zone treatment (RZT) plant. Performance evaluation of the treatments is evaluated based on key parameters for treated sewage water such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), suspended solids, color, pathogens (total and thermotolerant coliforms), and persistent organic pollutants (POPs) such as caffeine, acetaminophen, ibuprofen, and diclofenac. HIGHLIGHTS Root zone treatment (RZT) technology removed 75% COD, 13% BOD, and 67% phosphates.; TADOX® treatment of RZT-treated water led to BOD, COD, NO3-N, and PO4-P % removal as 94, 50, 66, and 100.; TADOX® was effective to remove micropollutants in the range of 79–88%.

    TERI advanced oxidation technology (TADOX®) for treatment and rejuvenation of open drains and surface water bodies: making habitats sustainable

    No full text
    Open drains contain sewage waste and find route to surface water bodies mainly due to the absence of dedicated conveyance of wastewater to centralized wastewater treatment facilities. This poses severe environmental, public health and occupational health hazard and there is an urgent need for onsite treatment of open drains. TADOX® (TERI Advanced Oxidation Technology) from TERI (The Energy and Resources Institute, New Delhi) is an advanced approach treat drains using photocatalysis as an advanced oxidation process. This paper presents a case study of an open drain, which when treated with TADOX® Technology, improved water quality parameters meeting the regulatory norms. The untreated open drain did not meet Class E of the Water Quality Criteria laid down by the regulatory body, and attained Class A Water Quality Criteria after end-to-end treatment within 5 h. TADOX® treatment resulted in the removal of 63.5% chemical oxygen demand, 99% biochemical oxygen demand, 96% phosphate, 61% nitrogen, 3 log reduction in E. coli and 4 log reduction in total coliform values with a doubling in dissolved oxygen levels. Micropollutant load reduction of 93.5% in acetaminophen, 96% in sulfamethoxazole, 96% in ibuprofen and 89% in caffeine was also recorded in the study. HIGHLIGHTS TADOX treatment of open drain bypassed biological treatment and resultant treated water complied with Class A of Designated water reuse criteria defined by CPCB, India.; The overall 5-hour end-to-end treatment resulted in significant removal of primary pollutants like 63.5% COD, 99% BOD, 96% phosphate and 61% TKN.; 3 log reduction in E. coli and 4 log reduction in total coliform values.

    An internal segment (residues 58-119) of the hepatitis B virus X protein is sufficient to activate MAP kinase pathways in mouse liver

    Get PDF
    The human hepatitis B virus X protein (HBx) is known as a dual-specificity transactivator stimulating the transcriptional machinery in the nucleus and signal transduction pathways in the cytoplasm. HBx-induced activation of mitogen-activated protein kinase (MAPK) signaling cascades is considered to play an important role in hepatitis B virus-mediated hepatocarcinogenesis. Herein, we have identified the regions of HBx that are crucial for activating such signaling cascades in vivo. A truncated mutant incorporating regions C-E (amino acids 58-140) was as effective as the full-length HBx in activating MAPKs and enhancing activator protein-1 binding activity. While deletion of region C (amino acids 58-84) or D (amino acids 85-119) led to a drastic loss of function, region E (amino acids 120-140) was dispensable for the activation of signaling cascades. Overall, these findings provide the first evidence for the requirement of domain 58-119 of HBx in transmitting mitogenic signals to the nucleus in vivo

    Not Available

    No full text
    Not AvailableMahseer is an important group of endemic game fish found in the Indian subcontinent inhabiting in streams, riverine pools and lakes. Besides commercial fishery, it also forms lucrative sport fishery in the Himalayan rivers. Samples of golden mahseer (Tor putitora) were collected from the river Kosi at Ramnagar area (lesser Himalayan region) of Uttarakhand, India during 2014–2016 to study reproductive biology and trace any changes in breeding phenology from earlier records. The observed breeding season was from July till September. In males (310–565 mm, 355–1750 g) and females (315–580 mm, 260–2500 g), GSI values surged from late June to early July and peaked in August. Absolute and relative fecundity ranged from 4217 to 8365 and from 3667 to 7348 per kg, respectively. The maximum water temperature was usually recorded in May (30.5°C) and minimum (18.4°C) in January. Sex ratio was estimated at 1:1.25 with χ2 value of 3.20 and the difference was non-significant. The breeding phenology of golden mahseer may likely have gone through two distinct steps of transformation viz. shifting-prolongation (1911–1981) and reduction-stabilization (1981–present). Even after a probable reduction in duration of breeding season and shift (delay) in onset of breeding in Golden mahseer population of lesser Himalayan region during 1911–1981, some stabilization in breeding phenology appears to have been attained since 2000s. It is predicted that the species appears to be continuously adapting to changing climate in lesser Himalayas.The financial help of ICAR-CRIDA for funding in the project National Innovations in Climate Resilient Agriculture (NICRA) is also gratefully acknowledged

    Not Available

    No full text
    Not AvailableMahseer is an important group of endemic game fish found in the Indian subcontinent inhabiting in streams, riverine pools and lakes. Besides commercial fishery, it also forms lucrative sport fishery in the Himalayan rivers. Samples of golden mahseer (Tor putitora) were collected from the river Kosi at Ramnagar area (lesser Himalayan region) of Uttarakhand, India during 2014–2016 to study reproductive biology and trace any changes in breeding phenology from earlier records. The observed breeding season was from July till September. In males (310–565 mm, 355–1750 g) and females (315–580 mm, 260–2500 g), GSI values surged from late June to early July and peaked in August. Absolute and relative fecundity ranged from 4217 to 8365 and from 3667 to 7348 per kg, respectively. The maximum water temperature was usually recorded in May (30.5°C) and minimum (18.4°C) in January. Sex ratio was estimated at 1:1.25 with χ2 value of 3.20 and the difference was non-significant. The breeding phenology of golden mahseer may likely have gone through two distinct steps of transformation viz. shifting-prolongation (1911–1981) and reduction-stabilization (1981–present). Even after a probable reduction in duration of breeding season and shift (delay) in onset of breeding in Golden mahseer population of lesser Himalayan region during 1911–1981, some stabilization in breeding phenology appears to have been attained since 2000s. It is predicted that the species appears to be continuously adapting to changing climate in lesser Himalayas.Not Availabl

    Pattern of reproductive biology of the endangered golden mahseer Tor putitora (Hamilton 1822) with special reference to regional climate change implications on breeding phenology from lesser Himalayan region, India

    No full text
    Mahseer is an important group of endemic game fish found in the Indian subcontinent inhabiting in streams, riverine pools and lakes. Besides commercial fishery, it also forms lucrative sport fishery in the Himalayan rivers. Samples of golden mahseer (Tor putitora) were collected from the river Kosi at Ramnagar area (lesser Himalayan region) of Uttarakhand, India during 2014–2016 to study reproductive biology and trace any changes in breeding phenology from earlier records. The observed breeding season was from July till September. In males (310–565 mm, 355–1750 g) and females (315–580 mm, 260–2500 g), GSI values surged from late June to early July and peaked in August. Absolute and relative fecundity ranged from 4217 to 8365 and from 3667 to 7348 per kg, respectively. The maximum water temperature was usually recorded in May (30.5°C) and minimum (18.4°C) in January. Sex ratio was estimated at 1:1.25 with χ2 value of 3.20 and the difference was non-significant. The breeding phenology of golden mahseer may likely have gone through two distinct steps of transformation viz. shifting-prolongation (1911–1981) and reduction-stabilization (1981–present). Even after a probable reduction in duration of breeding season and shift (delay) in onset of breeding in Golden mahseer population of lesser Himalayan region during 1911–1981, some stabilization in breeding phenology appears to have been attained since 2000s. It is predicted that the species appears to be continuously adapting to changing climate in lesser Himalayas

    Not Available

    No full text
    Not AvailableMahseer is an important group of endemic game fish found in the Indian subcontinent inhabiting in streams, riverine pools and lakes. Besides commercial fishery, it also forms lucrative sport fishery in the Himalayan rivers. Samples of golden mahseer (Tor putitora) were collected from the river Kosi at Ramnagar area (lesser Himalayan region) of Uttarakhand, India during 2014–2016 to study reproductive biology and trace any changes in breeding phenology from earlier records. The observed breeding season was from July till September. In males (310–565 mm, 355–1750 g) and females (315–580 mm, 260–2500 g), GSI values surged from late June to early July and peaked in August. Absolute and relative fecundity ranged from 4217 to 8365 and from 3667 to 7348 per kg, respectively. The maximum water temperature was usually recorded in May (30.5°C) and minimum (18.4°C) in January. Sex ratio was estimated at 1:1.25 with χ2 value of 3.20 and the difference was non-significant. The breeding phenology of golden mahseer may likely have gone through two distinct steps of transformation viz. shifting-prolongation (1911–1981) and reduction-stabilization (1981–present). Even after a probable reduction in duration of breeding season and shift (delay) in onset of breeding in Golden mahseer population of lesser Himalayan region during 1911–1981, some stabilization in breeding phenology appears to have been attained since 2000s. It is predicted that the species appears to be continuously adapting to changing climate in lesser Himalayas.ICAR NICR
    corecore