6,316 research outputs found

    Quantum metamaterial without local control

    Get PDF
    A quantum metamaterial can be implemented as a quantum coherent 1D array of qubits placed in a transmission line. The properties of quantum metamaterials are determined by the local quantum state of the system. Here we show that a spatially-periodic quantum state of such a system can be realized without direct control of the constituent qubits, by their interaction with the initializing ("priming") pulses sent through the system in opposite directions. The properties of the resulting quantum photonic crystal are determined by the choice of the priming pulses. This proposal can be readily generalized to other implementations of quantum metamaterials.Comment: 6 pages, 5 figure

    Multivalued current-phase relationship in a.c. Josephson effect for a three-dimensional Weyl semimetal WTe2_2

    Full text link
    We experimentally study electron transport between two superconducting indium leads, coupled to a single WTe2_2 crystal, which is a three-dimensional Weyl semimetal. We demonstrate Josephson current in long 5~μ\mum In-WTe2_2-In junctions, as confirmed by the observation of integer (1,2,3) and fractional (1/3, 1/2, 2/3) Shapiro steps under microwave irradiation. Demonstration of fractional a.c. Josephson effect indicates multivalued character of the current-phase relationship, which we connect with Weyl topological surface states contribution to Josephson current. In contrast to topological insulators and Dirac semimetals, we do not observe 4π4\pi periodicity in a.c. Josephson effect for WTe2_2 at different frequencies and power, which might reflect chiral character of the Fermi arc surface states in Weyl semimetal.Comment: the text is seriously corrected. arXiv admin note: text overlap with arXiv:1801.0955

    Signature of Fermi arc surface states in Andreev reflection at the WTe2_2 Weyl semimetal surface

    Full text link
    We experimentally investigate charge transport through the interface between a niobium superconductor and a three-dimensional WTe2_2 Weyl semimetal. In addition to classical Andreev reflection, we observe sharp non-periodic subgap resistance resonances. From an analysis of their positions, magnetic field and temperature dependencies, we can interpret them as an analog of Tomasch oscillations for transport along the topological surface state across the region of proximity-induced superconductivity at the Nb-WTe2_2 interface. Observation of distinct geometrical resonances implies a specific transmission direction for carriers, which is a hallmark of the Fermi arc surface states.Comment: 5 pages, some misprints has been correcte

    Conductance oscillations and zero-bias anomaly in a single superconducting junction to a three-dimensional Bi2Te3Bi_2Te_3 topological insulator

    Full text link
    We experimentally investigate Andreev transport through a single junction between an s-wave indium superconductor and a thick film of a three-dimensional Bi2Te3Bi_2Te_3 topological insulator. We study Bi2Te3Bi_2Te_3 samples with different bulk and surface characteristics, where the presence of a topological surface state is confirmed by direct ARPES measurements. All the junctions demonstrate Andreev transport within the superconducting gap. For junctions with transparent InBi2Te3In-Bi_2Te_3 interfaces we find a number of nearly periodic conductance oscillations, which are accompanied by zero-bias conductance anomaly. Both effects disappear above the superconducting transition or for resistive junctions. We propose a consistent interpretation of both effects as originating from proximity-induced superconducting correlations within the Bi2Te3Bi_2Te_3 topological surface state

    Multiple magnon modes in the Co3_3Sn2_2S2_2 Weyl semimetal candidate

    Full text link
    We experimentally investigate electron transport in kagome-lattice ferromagnet Co3_3Sn2_2S2_2, which is regarded as a time-reversal symmetry broken Weyl semimetal candidate. We demonstrate dV/dI(I)dV/dI(I) curves with pronounced asymmetric dV/dIdV/dI spikes, similar to those attributed to current-induced spin-wave excitations in ferromagnetic multilayers. In contrast to multilayers, we observe several dV/dIdV/dI spikes' sequences at low, \approx104^4 A/cm2^2, current densities for a thick single-crystal Co3_3Sn2_2S2_2 flake in the regime of fully spin-polarized bulk. The spikes at low current densities can be attributed to novel magnon branches in magnetic Weyl semimetals, which are predicted due to the coupling between two magnetic moments mediated by Weyl fermions. Presence of spin-transfer effects at low current densities in Co3_3Sn2_2S2_2 makes the material attractive for applications in spintronics.Comment: final versio

    Capture into Rydberg states and momentum distributions of ionized electrons

    Full text link
    The yield of neutral excited atoms and low-energy photoelectrons generated by the electron dynamics in the combined Coulomb and laser field after tunneling is investigated. We present results of Monte-Carlo simulations built on the two-step semiclassical model, as well as analytic estimates and scaling relations for the population trapping into the Rydberg states. It is shown that mainly those electrons are captured into bound states of the neutral atom that due to their initial conditions (i) have moderate drift momentum imparted by the laser field and (ii) avoid strong interaction ("hard" collision) with the ion. In addition, it is demonstrated that the channel of capture, when accounted for in semiclassical calculations, has a pronounced effect on the momentum distribution of electrons with small positive energy. For the parameters that we investigated its presence leads to a dip at zero momentum in the longitudinal momentum distribution of the ionized electrons.Comment: 9 pages, 8 figures in one zip-archiv

    Interpreting Attoclock Measurements of Tunnelling Times

    Full text link
    Resolving in time the dynamics of light absorption by atoms and molecules, and the electronic rearrangement this induces, is among the most challenging goals of attosecond spectroscopy. The attoclock is an elegant approach to this problem, which encodes ionization times in the strong-field regime. However, the accurate reconstruction of these times from experimental data presents a formidable theoretical challenge. Here, we solve this problem by combining analytical theory with ab-initio numerical simulations. We apply our theory to numerical attoclock experiments on the hydrogen atom to extract ionization time delays and analyse their nature. Strong field ionization is often viewed as optical tunnelling through the barrier created by the field and the core potential. We show that, in the hydrogen atom, optical tunnelling is instantaneous. By calibrating the attoclock using the hydrogen atom, our method opens the way to identify possible delays associated with multielectron dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe
    corecore