20 research outputs found
New combined PIC-MCC approach for fast simulation of a radio frequency discharge at low gas pressure
A new combined PIC-MCC approach is developed for accurate and fast simulation
of a radio frequency discharge at low gas pressure and high density of plasma.
Test calculations of transition between different modes of electron heating in
a ccrf discharge in helium and argon show a good agreement with experimental
data.
We demonstrate high efficiency of the combined PIC-MCC algorithm, especially
for the collisionless regime of electron heating.Comment: 6 paged, 8 figure
Modeling of chemical processes in the low pressure capacitive RF discharges in a mixture of Ar/C2H2
We study the properties of a capacitive 13.56 MHz discharge properties with a
mixture of Ar/C2H2 taking into account the plasmochemistry and growth of heavy
hydrocarbons. A hybrid model was developed to combine the kinetic description
for electron motion and the fluid approach for negative and positive ions
transport and plasmochemical processes. A significant change of plasma
parameters related to injection of 5.8% portion of acetylene in argon was
observed and analyzed. We found that the electronegativity of the mixture is
about 30%. The densities of negatively and positively charged heavy
hydrocarbons are sufficiently large to be precursors for the formation of
nanoparticles in the discharge volume.Comment: 11 pages, 14 figure
Radio-frequency discharges in Oxygen. Part 1: Modeling
In this series of three papers we present results from a combined
experimental and theoretical effort to quantitatively describe capacitively
coupled radio-frequency discharges in oxygen. The particle-in-cell Monte-Carlo
model on which the theoretical description is based will be described in the
present paper. It treats space charge fields and transport processes on an
equal footing with the most important plasma-chemical reactions. For given
external voltage and pressure, the model determines the electric potential
within the discharge and the distribution functions for electrons, negatively
charged atomic oxygen, and positively charged molecular oxygen. Previously used
scattering and reaction cross section data are critically assessed and in some
cases modified. To validate our model, we compare the densities in the bulk of
the discharge with experimental data and find good agreement, indicating that
essential aspects of an oxygen discharge are captured.Comment: 11 pages, 10 figure